

Forschung / Beratung / Evaluation / Recherche / Conseil / Evaluation / Research / Consulting / Evaluation /

Abteilung für Umwelt, Kanton Aargau

Luftschadstoffbedingte Gesundheitskosten im Kanton Aargau

Schlussbericht

Erarbeitet durch

econcept AG, Gerechtigkeitsgasse 20, CH-8001 Zürich www.econcept.ch / + 41 44 286 75 75

Autoren/innen

Valentin Delb, Dipl. Ing. ETH
Stephanie Bade, lic. oec. publ., Ökonomin
Anna Hotz, MA UZH in Wirtschaftswissenschaften
Basil Odermatt, MA UZH in Wirtschaftswissenschaften

Dateiname: 2686_be_kosten luft ag aktuell.docx

Speicherdatum: 7. Juni 2022

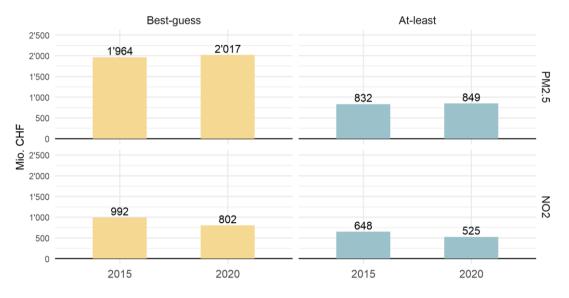
Inhalt

Zusa	ammenfassung	
1	Einleitung	1
1.1	Ausgangslage und Auftrag	1
1.2	Analyserahmen und Berichtsinhalte	3
2	Vorgehen und Berechnungsinputs	5
2.1	Übersicht	5
2.2	Mittlere Belastungen in der Schweiz	7
2.3	Schwellenwerte und Belastungen im Kanton Aargau	7
2.4	Verwendete Dosis-Wirkungs-Relationen und Varianten	8
2.5	Inzidenz- und Prävalenzraten	10
2.6	Kostensätze	11
3	Detaillierte Ergebnisse für die einzelnen Schadstoffe	12
3.1	PM2.5	12
3.2	NO ₂	14
4	Fazit zu den luftschadstoffbedingten Gesundheitskosten im Kanton Aargau	16
4.1	Kosten und Determinanten der Kostenentwicklung	16
4.2	Nutzen der Verbesserung der Luftqualität	17
5	Aufteilung auf die Verursachergruppen	19
5.1	Vorgehen	19
5.2	Ergebnisse	19
Anh	ang	21
A-1	Begriffserklärungen	21
A-2	Emissionen	23
A-3	Immissionen	25
A-4	Bevölkerungsexposition	28
A-5	Berechnungsbeispiel Attributable Fälle	31
A-6	Berechnungsinputs und Zwischenergebnisse	34
A-7	Sensitivitätsanalyse	47
A-8	Literaturverzeichnis	49

Zusammenfassung

Die erfolgreiche Luftreinhaltepolitik hat eine deutliche Verbesserung der Luftqualität während der letzten Jahrzehnte bewirkt. Trotz der Abnahme liegt die Schadstoffbelastung im Kanton Aargau, wie auch in der übrigen Schweiz, teilweise immer noch über den Immissionsgrenzwerten der Luftreinhalteverordnung (LRV) und den kritischen Belastungsgrenzen für Stickstoffeinträge bei empfindlichen Ökosystemen. Mit Blick auf die Vorgaben des Umweltschutzgesetzes sind daher weitere Verbesserungen durch lufthygienische Massnahmen notwendig. Die Abteilung für Umwelt, Kanton Aargau (AfU) aktualisiert zurzeit den Massnahmenplan Luft. Als wichtiger Indikator für den weiteren Handlungsbedarf dient neben den Emissions-, Immissions-, und Expositionsdaten auch die Schätzung der Schadenskosten.

Die Weltgesundheitsorganisation (WHO) hat im September 2021 ihre neuen Luftqualitätsleitlinien (Air Quality Guidelines) vorgestellt. Die empfohlenen Luftqualitätsrichtwerte liegen deutlich tiefer als die Werte aus dem Jahr 2005 und als die Immissionsgrenzwerten der LRV. Damit wird bestätigt, dass die Luftverschmutzung auch unterhalb der in der Schweiz gültigen Grenzwerte zu Gesundheitsschäden führt.


Für die Schätzung luftschadstoffbedingten Gesundheitskosten werden die Auswirkungen der Luftschadstoffe auf verschiedene Gesundheitsschäden betrachtet. An den insgesamt entstehenden Kosten hat jedoch die Mortalität bei den betrachteten Schadstoffen mit Abstand den grössten Anteil. Gleichzeitig steht die Mortalität in der Forschung stärker im Fokus als andere Gesundheitswirkungen, weswegen sich hier vergleichsweise viele Studien mit unterschiedlichen Ergebnissen finden. Daher werden die luftschadstoffbedingten Gesundheitskosten in zwei Variante ausgewiesen, welche sich in der Schätzung der mortalitätsbedingten Kosten unterscheiden. Für andere Gesundheitsfolgen (Asthma, Bronchitis, Herz-Kreislauferkrankungen etc.) unterscheiden sich die Varianten nicht.

Die *Best-guess-Variante* stützt sich auf neu erschienene Studien und entspricht damit der Schätzung gemäss aktuellem Kenntnisstand. Sie weist jedoch Unsicherheitsbereiche sowohl nach oben als auch nach unten auf, wobei von maximal +/- 25% Abweichung ausgegangen wird.¹ Für die *At-least-Variante* werden hingegen Schätzer verwendet, welche angesichts der neuen Erkenntnisse mit hoher Wahrscheinlichkeit zu einer Unterschätzung der luftschadstoffbedingten Gesundheitskosten führen. Die At-least-Schätzungen können somit als Minimalwerte interpretiert werden.

Die statistische Unsicherheit der Best-guess-Schätzung beträgt +/- 21% für PM2.5 sowie +/- 18% für NO₂. Nebst der statistischen Unsicherheit bestehen in geringem Masse Unsicherheiten bei der Immissionsmodellierung und den Annahmen, die sich jedoch nicht exakt beziffern lassen. Insgesamt wird daher von einem Unsicherheitsbereich von rund 25% ausgegangen.

Kosten der Luftverschmutzung

Die luftschadstoffbedingten Gesundheitskosten in den Jahren 2015 und 2020 im Kanton Aargau wurden anhand von den Schadstoffen Feinstaub (PM2.5) und Stickstoffdioxid (NO₂) ermittelt.

econcept

Abbildung 1: Luftschadstoffbedingte Gesundheitskosten im Kanton Aargau 2015 und 2020.

Da sich die Gesundheitswirkungen der betrachteten Stoffe nicht abgrenzen lassen, dürfen die Ergebnisse nicht addiert werden.

An den ausgewiesenen Kosten haben jeweils luftschadstoffbedingte frühzeitige Todesfälle hohe Anteile. Besonders gilt dies für die Best-guess-Schätzungen sowie für die NO2bedingten Kosten. Weitere kostenrelevante Gesundheitswirkungen sind chronische Bronchitis bei Erwachsenen sowie Tage mit eingeschränkter Aktivität.

Die ausgewiesenen Kosten setzen sich aus Behandlungskosten, Produktionsausfällen und immateriellen Kosten zusammen, mit welchen das aus frühzeitigen Todesfällen und Krankheiten entstehende Leid bewertet wird. Insbesondere bei der Best-guess-Variante und beim NO₂ fallen die immateriellen Kosten mit Anteilen von rund 80% bis 95% sehr stark ins Gewicht. Es handelt sich folglich um Kosten, die nicht in Wertschöpfungs- oder Haushaltsstatistiken auftauchen, was sie jedoch nicht minder relevant macht.

Während die NO2-bedingten Gesundheitskosten zwischen 2015 und 2020 zurückgegangen sind, zeigt sich bei PM2.5 ein Anstieg. Dies liegt an der unterschiedlichen Entwicklung der Bevölkerungsbelastung: Die NO2-Belastungen sind genügend gesunken, um die kostentreibende Wirkung des Bevölkerungswachstums und des Anstiegs der Kostensätze für verlorene Lebens- und Erwerbszeit mehr als auszugleichen. Bei PM2.5 überwiegen jedoch die kostensteigernden Effekte, so dass trotz Rückgang der Belastung ein Anstieg der Kosten zu verzeichnen ist.

Nutzen der Verbesserung der Luftqualität (Gesundheitskosten)

Der durch die Verbesserung der Luftqualität bedingte Rückgang der Kosten der Luftverschmutzung stiftet Nutzen. Dieser kann beziffert werden, indem berechnet wird, wie hoch die Kosten bei gleichbleibend hohem Belastungsniveau gewesen wären. Die Differenz zwischen den Kosten mit gleichbleibend hohem Belastungsniveau und mit dem tatsächlichen, sinkenden Belastungsniveau ergibt den Nutzen der Verbesserung der Luftqualität, welcher auf vermiedene Gesundheitsschäden zurückgeht. Weiterer Nutzen entsteht dank vermiedenen Wald-, Biodiversitäts- und Gebäudeschadenskosten sowie Ernteausfälle.

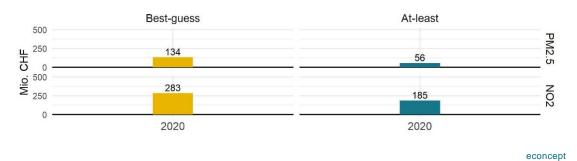
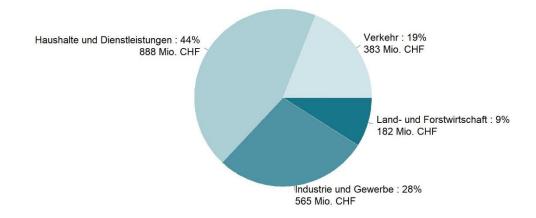
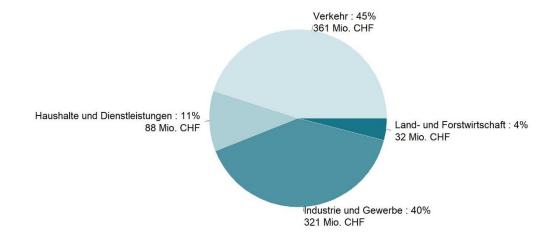


Abbildung 2: Nutzen der Verbesserung der Luftqualität.

Wie auch die Kosten dürfen die für die verschiedenen Schadstoffe ausgewiesenen Nutzen nicht addiert werden, da die Gesundheitswirkungen nicht abgegrenzt werden können.


Aufteilung auf Verursachergruppen

Die ermittelten luftschadstoffbedingten Gesundheitskosten können auf Basis der Emissionskataster ihren Verursachergruppen zugeordnet werden. Sowohl die anhand der Bestguess Variante ermittelten PM2.5-bedingten Gesundheitsschadenskosten, als auch die anhand der Best-guess Variante ermittelten NO2-bedingten Gesundheitskosten werden auf die Verursachergruppen aufgeteilt. Hierfür wird für die Aufteilung der Gesundheitsschadenskosten auf die Verursachergruppen die Anteile der Verursachergruppen an den Gesamtemissionen des betrachteten Schadstoffes im Jahr 2020 verwendet.


An den PM2.5-bedingten Gesundheitskosten haben die Verursachergruppen *Haushalte und Dienstleistungen* mit 44% (hauptsächlich Holzfeuerungen) und *Industrie und Gewerbe* mit 28% die grössten Anteile. Auch die Verursachergruppe *Verkehr* trägt mit 19% wesentlich zu den PM2.5-bedingten Gesundheitsschadenskosten bei. Der *Land- und Forstwirtschaft* werden mit 9% ein vergleichsweise geringer Anteil an den PM2.5-bedingten Gesundheitsschadenskosten zugeordnet.

Anders als beim PM2.5 verursacht beim NO₂ der *Verkehr* mit 44% den grössten Anteil der Gesundheitskosten, dicht gefolgt von der Verursachergruppe *Industrie und Gewerbe* mit 40%. Die Verursachergruppen *Haushalte und Dienstleistungen* und *Land- und Forstwirtschaft* weisen hingegen mit 11% und 4% vergleichsweise kleine Anteil aus.

PM2.5

NO_2

econcept

Abbildung 3: Aufteilung der Gesundheitskosten der Luftverschmutzung auf die Verursachergruppen im Jahr 2020. Ergebnisse gerundet. Die Frankenbeträge gelten unter Verwendung der anhand der Bestguess Variante geschätzten Gesundheitsschadenskosten.

1 Einleitung

1.1 Ausgangslage und Auftrag

Die erfolgreiche Luftreinhaltepolitik hat eine deutliche Verbesserung der Luftqualität während der letzten Jahrzehnte bewirkt, wie der Verlauf der Schadstoffimmissionen am Beispiel der Messstation Baden-Schönaustrasse in Abbildung 4 zeigt.

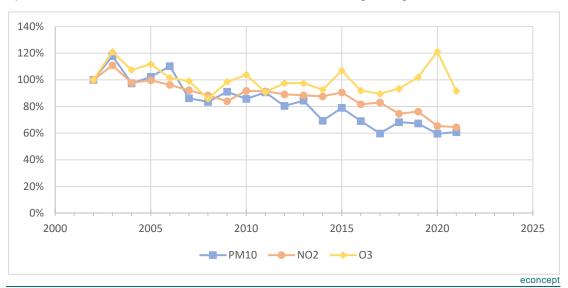
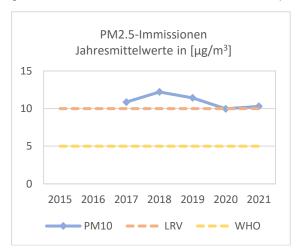


Abbildung 4: Verlauf der Immissionen in Baden, Messstation Schönaustrasse, normiert auf das Jahr 2002 (= 100%). Jahresmittelwerte für PM10 und NO₂, max. Stundenmittelwert für O3. Datenquelle: www.luftqualitaet.ch

Trotz der Abnahme liegt die Schadstoffbelastung im Kanton Aargau, wie auch in der übrigen Schweiz, teilweise immer noch über den Immissionsgrenzwerten (IGW) der Luftreinhalteverordnung (LRV) und den kritischen Belastungsgrenzen für Stickstoffeinträge bei empfindlichen Ökosystemen.


Die Weltgesundheitsorganisation (WHO) hat im September 2021 ihre neuen Luftqualitätsleitlinien (Air Quality Guidelines) vorgestellt. Die empfohlenen Luftqualitätsrichtwerte liegen deutlich tiefer als die Werte aus dem Jahr 2005 und als die IGW der LRV, wie die untenstehende Tabelle 1 zeigt. Damit wird bestätigt, dass die Luftverschmutzung auch unterhalb der in der Schweiz gültigen Grenzwerte zu Gesundheitsschäden führt.

Schadstoff	Mittelungszeit	AQG-Richtwert 2005	AQG-Richtwert 2021	Grenzwert LRV 2013
PM2.5 [µg/m³]	Jahr	10	5	10
	24 Stunden ^a	25	15	-
PM10 [µg/m³]	Jahr	25	15	20
	24 Stunden ^a	50	45	50
NO ₂ [µg/m³]	Jahr	40	10	30
	24 Stunden ^a	0	25	80
O ₃ [µg/m³]	Sommersaison b	-	60	-
	8 Stunden Maximum ^a	100	100	120 (1h)
SO ₂	24 Stunden ^a	20	40	100 (30 1y)
CO	24 Stunden ^a	7	4	8

^a 99-Perzentil (d. h. 3-4 Überschreitungstage pro Jahr).

Tabelle 1: Alte und neue WHO-Luftqualitätsleitlinien (AQG-Richtwert) und aktuelle Werte der Schweizer Luftreinhalteverordnung (Grenzwert Schweiz LRV). Quelle: Newsletter 4/2021 der Dokumentationsstelle Luft und Gesundheit LUDOK

Am Beispiel der Messreihe an der Schönaustrasse in Baden in Abbildung 5 ist der Vergleich der IGW der LRV und der WHO-Luftqualitätsleitlinien ersichtlich.

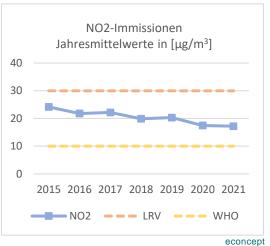


Abbildung 5: Verlauf der Immissionen in Baden, Messstation Schönaustrasse im Vergleich zum Immissionsgrenzwert LRV und zum AQG-Richtwert 2021 (Jahresmittelwerte für PM2.5 und NO2). Datenquelle: www.luftqualitaet.ch

Mit Blick auf die Vorgaben des Umweltschutzgesetzes (USG) sind daher weitere Verbesserungen durch lufthygienische Massnahmen notwendig. Als wichtiger Indikator für den weiteren Handlungsbedarf dient neben den Emissions-, Immissions-, und Expositionsdaten auch die Schätzung der Schadenskosten.

Die Abteilung für Umwelt, Kanton Aargau (AfU) erarbeitet zurzeit einen Massnahmenplan Luft 2022 und wird diesen voraussichtlich im Herbst 2022 dem Regierungsrat zum Beschluss unterbreiten. Der Bedarf nach verstärkten Massnahmen im Bereich Lufthygiene ergibt sich aus der Schädlichkeit der verschiedenen Schadstoffe für die Gesundheit und

^b Durchschnitt des maximalen 8-Stunden-Mittelwerts der O3-Konzentration in den sechs aufeinanderfolgenden Monaten mit der höchsten O3-Konzentration im Sechsmonatsdurchschnitt.

die Ökosysteme, der Überschreitungen von Immissionsgrenzwerten der LRV sowie den Emissionsreduktionszielen des Bundes. Als zusätzliche Grundlage für die Massnahmenplanung dient die Ermittlung der luftschadstoffbedingten Gesundheitskosten.

Die AfU beauftragte econcept AG, eine Studie über die externen Kosten der Luftverschmutzung im Kanton Aargau zu verfassen.

1.2 **Analyserahmen und Berichtsinhalte**

Perimeter und Untersuchungszeitraum

Betrachtet wird der Kanton Aargau. Dabei werden Emissions- und Immissionsdaten für die Jahre 2015 und 2020 verwendet (Modellrechnungen). Im Jahr 2020 wurden die Effekte der Corona-Massnahmen (z.B. deutlich weniger Verkehr während dem ersten Lockdown) nicht berücksichtigt.

Schadstoffe, Schadensbereiche und Expositionen

Eine Vielzahl von freigesetzten Substanzen entfalten negative Umwelt- oder Gesundheitswirkungen. Für die Ermittlung der Kosten der Luftverschmutzung liegt der Fokus jedoch auf den zurzeit schadensmässig wichtigsten Stoffen für die Gesundheit, d.h. Feinstaub (PM2.5) und Stickstoffdioxid (NO₂). Betrachtet werden die Schadenswirkungen für den Schadensbereich «Gesundheit der Wohnbevölkerung».

Territorialprinzip

Wie auch auf nationaler Ebene üblich, wird bei der Zuordnung der Kosten der Luftverschmutzung zu den verschiedenen Verursachergruppen das Territorialprinzip verwendet. Demnach werden alle Immissionen innerhalb der Kantonsgrenzen Emissionen innerhalb derselben Gebiete zugerechnet. Da angesichts der räumlichen und meteorologischen Gegebenheiten Schadstoffimporte und -exporte sich in etwa die Waage halten dürften, kann dies als vertretbare Vereinfachung eingestuft werden.

Umgang mit Unsicherheiten: Bewertung nach «best-guess» und «at-least»

Die Verlässlichkeit und die Validität der für die Ermittlung der Kosten der Luftverschmutzung verfügbaren Grundlagen sind unterschiedlich. Für die luftschadstoffbedingte Mortalität werden zwei Varianten betrachtet, welche sich in den verwendeten Dosis-Wirkungs-Relationen unterscheiden: Die Best-guess-Variante stützt sich auf neu erschienene Studien und entspricht damit der Schätzung gemäss aktuellem Kenntnisstand, weist jedoch Unsicherheitsbereiche sowohl nach oben als auch nach unten auf, wobei von rund +/- 25% möglicher Abweichung ausgegangen wird.2 Für die At-least-Variante werden hingegen

² Die statistische Unsicherheit der Best-guess-Schätzung beträgt +/- 21% für PM2.5 sowie +/- 18% für NO₂. Nebst der statistischen Unsicherheit bestehen in geringem Masse Unsicherheiten bei der Immissionsmodellierung und den Annahmen, die sich jedoch nicht exakt beziffern lassen. Insgesamt wird daher von einem Unsicherheitsbereich von rund 25% ausgegangen.

Schätzer verwendet, welche angesichts der neuen Erkenntnisse mit hoher Wahrscheinlichkeit zu einer Unterschätzung der luftschadstoffbedingten Gesundheitskosten führen. Die At-least-Schätzungen können somit als Minimalwerte interpretiert werden.

Sensitivitätsbetrachtungen

Für die Sensitivitätsanalyse werden anstelle der Effektschätzer deren 95%-Konfidenzintervalle für die Ermittlung der luftschadstoffbedingten Gesundheitskosten verwendet.

2 Vorgehen und Berechnungsinputs

Übersicht 2.1

Abbildung 6 zeigt das Vorgehen zur Schätzung der luftschadstoffbedingten Gesundheitskosten nach den folgenden Schritten (siehe auch Anhang A-1 für weitere Begriffserklärungen):

- Attributable Fälle pro zusätzliche Belastung: Die attributablen Fälle³ pro Belastungszunahmen werden auf Basis der aktuellen mittleren Belastungen sowie der aktuellen Inzidenz- und Prävalenzraten berechnet. Weiter gehen schadstoffspezifische Schwellenwerte in die Berechnung ein, ab welchen von einer gesundheitsschädlichen Wirkung auszugehen ist. Da schweizweite (und nicht kantonale) Inzidenz- und Prävalenzraten als Berechnungsinput dienen, beziehen sich die attributablen Fälle pro Belastungszunahmen auf die gesamte Schweiz.
- Bevölkerungsexposition: Auf Basis von Schadstoffemissionen, Immissionsmodellen/karten und Bevölkerungsstatistiken wird die Bevölkerungsexposition im Untersuchungsperimeter Kanton Aargau ermittelt.
- Gesundheitsschäden: Anhand der für die gesamte Schweiz gültigen attributablen Fälle pro 1 µg/m³ zusätzlicher Belastung und der Bevölkerungsexposition im Kanton Aargau können die schadstoffbedingten Gesundheitsschäden für den Kanton Aargau geschätzt werden.
- Kosten der Gesundheitsschäden: Mit Angaben zu den verlorenen Lebens- und Erwerbsjahren pro Todesfall sowie zu den durch Krankheiten und Todesfälle ausgelösten Kosten können schliesslich die luftschadstoffbedingten Gesundheitskosten ermittelt werden.

³ Siehe Berechnungsbeispiel in Anhang A-5

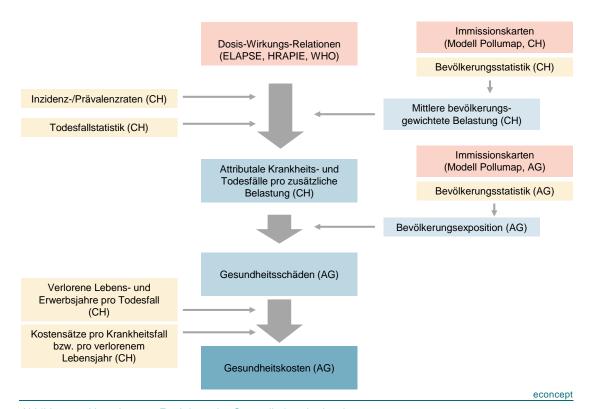


Abbildung 6: Vorgehen zur Ermittlung der Gesundheitsschadenskosten

gelb: Daten

rot: Modelle und Relationen

blau: Zwischenergebnisse und Ergebnisse

Tabelle 2 gibt einen Überblick über die verwendeten Berechnungsinputs für den hier vorliegenden Bericht:

Inputs für die Berechnung	
Bevölkerungsstatistik (CH und AG)	BFS
Mittlere Immissionsbelastung (CH) und exponierte Bevölkerung pro Immissionskategorie (AG)	Modellierung PolluMap (Infras/Meteotest 2020)
Dosis-Wirkungs-Relationen bzw. Effektschätzer und Schwellenwerte (internationale Literatur)	ELAPSE 2021 WHO 2021 HRAPIE 2013
Inzidenz und Prävalenzraten (CH)	ARE 2021
Durchschnittliche Anzahl verlorener Lebensjahre pro Todesfall (CH)	ARE 2021
Behandlungskosten (CH)	ARE 2021 LIK (BFS), Position «Gesundheitspflege» BFS
Produktionsausfallkosten (CH)	ARE 2021 Nominallohnindex
Zahlungsbereitschaft zur Vermeidung eines durch Luftschadstoffe bedingten frühzeitigen Todesfalls (CH)	ARE 2021 (basierend auf ecoplan 2016) Landesindex der Konsumentenpreise des BFS

Tabelle 2: Quellenübersicht Ermittlung Gesundheitsschadenskosten

2.2 Mittlere Belastungen in der Schweiz

Neben den Dosis-Wirkungsrelationen sowie die schweizweit erhobenen Inzidenz- und Prävalenzraten gehen in die Schätzung der attributablen Fälle pro Belastungszunahme die mittleren Belastungen in der Schweiz ein, da auch die Inzidenz- und Prävalenzraten auf Ebene Schweiz vorliegen. Bei den mittleren Belastungen werden für beide in diesem Bericht dargestellten Erhebungsjahre dieselben Werte verwendet, da sich andernfalls die attributablen Fälle pro Belastungszunahme für die beiden betrachteten Erhebungsjahre marginal unterscheiden würden, was die Komplexität erhöht, ohne die Schätzgenauigkeit in relevantem Masse zu verbessern.4

Schadstoff	Aktuelle mittlere bevölkerungsgewichtete Belastung CH (2020) ^(A)
PM2.5	9.3
NO ₂	17.2

Tabelle 3: Aktuelle mittlere bevölkerungsgewichtete Belastung in der Schweiz (μg/m³). Quelle: Infras/Meteotest 2020.

2.3 Schwellenwerte und Belastungen im Kanton Aargau

Für die Schätzung der Gesundheitsfolgen von Luftschadstoffen muss festgelegt werden, ab welchem Schwellenwert von einer gesundheitsschädigenden Wirkung der Luftbelastung ausgegangen wird. In der vorliegenden Studie werden die durch die WHO empfohlenen Schwellenwerte verwendet. Tabelle 4 zeigt diese Schwellenwerte im Vergleich mit der bevölkerungsgewichteten mittleren Belastung im Kanton Aargau. Die bevölkerungsgewichtete mittlere Belastung wird auf Basis der Bevölkerungsexposition ermittelt. Die Bevölkerungsexposition zeigt auf, wie viele Personen wie stark durch Luftschadstoffe belastet sind. Abbildung 7 und Abbildung 8 zeigen die Schwellenwerte im Vergleich mit der Bevölkerungsexposition. Anhand der Tabelle und der Abbildungen wird deutlich, dass die PM2.5und NO₂-Belastungen im Kanton Aargau deutlich über den Schwellenwerten liegen, so dass nahezu allen im Kanton Aargau vorkommenden Expositionen gesundheitsschädliche Wirkungen zugeschrieben werden.

	Schwellenwerte				
	Arithmetis	gemäss WHO (2021)			
Schadstoff	2015	2020	2015	2020	
PM2.5	10.2	9.8	10.1	9.8	5.0
NO ₂	19.6	17.1	19.4	16.9	10.0

Tabelle 4: Bevölkerungsgewichtete Mittelwerte der Schadstoffbelastung im Kanton Aargau (ermittelt auf Basis der Bevölkerungsexposition) und Schwellenwerte gemäss WHO. Alle Angaben in μg/m³.

⁴ Unterschiede in der Grössenordnung von +/- 1%, je nach Dosis-Wirkungsrelation etwas mehr oder weniger.

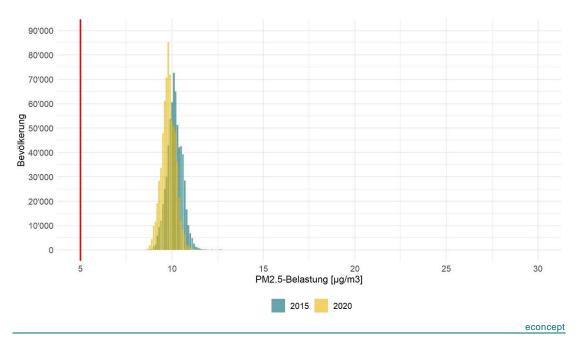


Abbildung 7: Bevölkerungsexposition im Kanton Aargau mit PM2.5 (rote Linie = Schwellenwert WHO 2021).

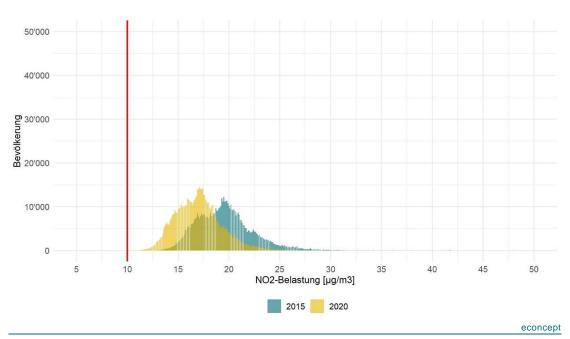


Abbildung 8: Bevölkerungsexposition im Kanton Aargau mit NO₂ (rote Linie = Schwellenwert WHO 2021).

2.4 Verwendete Dosis-Wirkungs-Relationen und Varianten

Das Wissen über die Gesundheitswirkungen der Luftverschmutzungen nimmt stetig zu, regelmässig werden neue Analysen und Meta-Analysen publiziert. Viele Forschungsarbeiten wurden allerdings in Regionen durchgeführt, wo deutlich höhere Belastungen zu finden sind als in der Schweiz und im Kanton Aargau. Daher sind auch nicht alle publizierten Studien gleichermassen auf die Schweiz und auf den Kanton Aargau anwendbar. Die für das Projekt verwendeten Dosis-Wirkungs-Relationen wurden daher auf Basis von zwei Kriterien ausgewählt:

- Vergleichbare Belastungssituation: Vorrangig und insbesondere für die stark kostenrelevante Mortalität werden Studien verwendet, welche für Gebiete mit einer nicht zu stark vom Kanton Aargau abweichenden Medianbelastung geschätzt wurden (vgl. Tabelle 4: Mittelwerte bevölkerungsgewichtete Schadstoffbelastung Kanton Aargau sowie Anhang A-6.1).
- Grösse der Datenbasis: Da anhand von Meta-Studien geschätzte Dosis-Wirkungs-Relationen verwendet werden, bezieht sich dieses Kriterium nicht nur auf eine hohe Anzahl an Individuen für eine Schätzung, sondern auch auf die Anzahl berücksichtigter Studien.

Weiter wird die luftschadstoffbedingte Mortalität in zwei Varianten geschätzt, welche sich in den verwendeten Dosis-Wirkungs-Relationen unterscheiden:

- Best-guess: Die Best-guess-Variante entspricht der Schätzung gemäss heutigem Kenntnisstand, weist jedoch Unsicherheitsbereiche sowohl nach oben als auch nach unten auf, wobei von rund +/- 25% möglicher Abweichung ausgegangen wird.5
- At-least: Für die At-least-Variante werden Schätzer verwendet, welche nach heutigem Kenntnisstand mit hoher Wahrscheinlichkeit zu einer Unterschätzung der luftschadstoffbedingten Gesundheitskosten führen.

Tabelle 5 und Tabelle 6 zeigen die ausgewählten Dosis-Wirkungs-Relationen bzw. Effektschätzer.⁶ Die Effektschätzer für PM2.5 und PM10 können für den jeweils anderen Schadstoff umgerechnet werden. Die Umrechnung vom Effektschätzer für PM10 auf den Effektschätzer für PM1.5 erfolgt mit dem Divisor 0.7.7

		Einheit	Effektschät- zer ^(A) pro 10 µg/m³ PM2.5	Gemessener Schadstoff	Quelle / Bemerkungen
Beast- guess	Mortalität Erwachsene	Fälle	1.260	PM2.5	ELAPSE 2021, Kohorten Studie für Europa (6 Länder) mit einer durchschnittlichen PM2.5 Be- lastung von 15.02 µg/m³.
At-least	Mortalität Erwachsene	Fälle	1.062	PM2.5	HARPIE 2013
	Säuglingssterblichkeit	Fälle	1.057	PM10	HARPIE 2013
für least-	Spitaleintritte wegen Atemwegserkrankungen	Spital- eintritte	1.019	PM2.5	HARPIE 2013
wendet für und At-least-	Spitaleintritte wegen Herz/Kreislauferkrankungen	Spital- eintritte	1.009	PM2.5	HARPIE 2013
<u> </u>	inzidenz chronische Bron-	Fälle	1.167	PM10	HARPIE 2013
Schät Best-g	Prävalenz von Bronchitis bei	Fälle	1.114	PM10	HARPIE 2013

⁵ Die statistische Unsicherheit der Best-guess-Schätzung beträgt +/- 21% für PM2.5 sowie +/- 18% für NO₂. Nebst der statistischen Unsicherheit bestehen in geringem Masse Unsicherheiten bei der Immissionsmodellierung und den Annahmen. die sich jedoch nicht exakt beziffern lassen. Insgesamt wird daher von einem Unsicherheitsbereich von rund 25% ausgegangen.

⁶ Siehe auch Anhang A-6.1 (Dosis-Wirkungs-Relationen)

Basierend auf Messungen wird für die Schweiz üblicherweise angenommen, dass der Anteil der PM2.5-Belastung an der PM10-Belastung bei ca. 0.7 (70%) liegt.

	Einheit	Effektschät- zer ^(A) pro 10 µg/m³ PM2.5	Gemessener Schadstoff	Quelle / Bemerkungen
Tage mit Asthmasymptomen bei Erwachsenen	Tage	1.041	PM10	HARPIE 2013
Tage mit Asthmasymptomen bei Kindern	Tage	1.040	PM10	HARPIE 2013
Tag mit eingeschränkter Ak- tivität	Tage	1.047	PM2.5	HARPIE 2013

Tabelle 5: Effektschätzer für PM2.5. Die Umrechnung vom Effektschätzer für PM10 auf den Effektschätzer für PM2.5 erfolgt, indem der Schätzer durch 0.7 dividiert wird.

⁽A) Siehe Dosis-Wirkungs-Relationen in Anhang A-6.1 und Rechenbeispiel in Anhang A-1

	Einheit	Effektschätzer ^(A) pro 10 μg/m³ NO ₂	Gemessener Schadstoff	Quelle / Bemerkung
Mortalität Erwachsene (Best-guess)		1.086		ELAPSE 2021, Kohorten Studie für Europa (6 Länder) mit einer durchschnittlichen NO ₂ Belastung von 25.00 µg/m³.
Mortalität Erwachsene (At-least)	Fälle	1.055	NO ₂	HARPIE 2013
Spitaleintritte wegen Atemwegserkrankun- gen	Spitalein- tritte	1.018	NO ₂	HARPIE 2013

Tabelle 6: Effektschätzer für NO₂.

2.5 Inzidenz- und Prävalenzraten

Die für die Schätzung der attributablen Fälle verwendeten Inzidenz- und Prävalenzraten⁸ werden aus ARE (2021) übernommen. Es werden für beide Erhebungsjahre dieselben Werte verwendet, da jahresspezifische Werte die Komplexität erhöhen, ohne die Schätzgenauigkeit relevant zu verbessern.

	Einheit	Rate in der Bevölkerung pro 100`000 effektiv
Mortalität Erwachsene	Fälle	775
Säuglingssterblichkeit	Fälle	3
Spitaleintritte wegen Atemwegserkrankungen	Spitaleintritte	980
Spitaleintritte wegen Herz/Kreislauferkrankungen	Spitaleintritte	852
Inzidenz chronische Bronchitis bei Erwachsenen	Fälle	2`387
Prävalenz von Bronchitis bei Kindern	Fälle	12`441
Tage mit Asthmasymptomen bei Erwachsenen	Tage	34`337
Tage mit Asthmasymptomen bei Kindern	Tage	76`640
Tag mit eingeschränkter Aktivität bei Erwachsenen	Tage	3`629`235

Tabelle 7: Inzidenz- und Prävalenzraten für Mortalität und Gesundheitsbeeinträchtigungen 2018. Quelle: ARE (2021).

⁽A) Siehe Dosis-Wirkungs-Relationen in Anhang A-6.1 und Rechenbeispiel in Anhang A-1

⁸ Siehe Anhang A-1 für Begriffserklärungen und A-5 für Berechnungsbeispiel

2.6 Kostensätze

Ebenso wie die Inzidenz- und Prävalenzraten, werden auch die Kostensätze aus ARE (2021) übernommen (Tabelle 8). Die Werte des Jahres 2020 entsprechen den teuerungsangepassten Werten des Jahres 2018.⁹ Folglich werden die luftschadstoffbedingten Gesundheitskosten zu laufenden Preisen bewertet.

	pro	2015	2020
	Todesfall	2'516'521	2'609'648
Verlorene Lebenszeit (immaterielle Kosten)	Todesfall	2'394'509	2'485'219
Verlorene Erwerbszeit	Todesfall	117'584	119'969
Wiederbesetzungskosten (Durchschnitt m/f)	Todesfall	4'429	4'460
Spitaleintritt wegen Atemwegserkrankungen	Fall	27'615	27'225
Spitaleintritt wegen Herzkreislauferkrankungen	Fall	16'453	16'263
Chronische Bronchitis bei Erwachsenen (ab 18 Jahre)	Fall	122'713	123'974
Akute Bronchitis bei Kindern (5-17 Jahre)	Fall	386	388
Tag mit Asthmasymptome bei Erwachsenen (ab 18 Jahre)	Tag	184	188
Tag mit Asthmasymptome bei Kindern (5-17 Jahre)	Tag	94	94
Tag mit eingeschränkter Aktivität (ab 18 Jahre)	Tag	495	504

Tabelle 8: Kostensätze für Krankheits- und Todesfälle in CHF. Quelle: ARE (2021).

Die medizinischen Behandlungskosten wurden mit dem LIK-Gesundheitspflege, die Produktionsausfallkosten mit dem Nominallohnindex und die immateriellen Kosten mit dem LIK-Total angepasst.

3 Detaillierte Ergebnisse für die einzelnen Schadstoffe

Die folgenden Kapitel zeigen die mit den oben beschriebenen Berechnungsinputs ermittelten attributablen Fälle und Kosten für PM2.5 und NO₂. Für die Interpretation sind die folgenden Punkte zu berücksichtigen:

- Die Ergebnisse für die verschiedenen Schadstoffe sind nicht addierbar. Da die Dosis-Wirkungs-Relationen nicht für den Einfluss anderer Schadstoffe bereinigt sind, dürfen die für die verschiedenen Schadstoffe ermittelten Kosten nicht addiert werden. Bei der Addition von durch Feinstaub und NO₂-bedingten Gesundheitskosten wäre nach aktuellem Kenntnistand von Doppelzählungen von rund einem Drittel auszugehen. ¹¹⁰
- Die Kosten werden anhand von zwei Varianten geschätzt. Die At-least-Schätzung kann als Mindestwert interpretiert werden, die Best-guess-Variante weist Unsicherheiten nach oben und unten auf.

3.1 PM2.5

Tabelle 9 zeigt die für PM2.5 geschätzten Gesundheitswirkungen für die beiden Erhebungsjahre im Kanton Aargau. Dabei sind bei der Mortalität die beiden Varianten Bestguess und At-least zu unterscheiden, welche zu stark unterschiedlichen Fallzahlen führen.

Bedingt durch das Bevölkerungswachstum sind die Fallzahlen bei allen Gesundheitswirkungen trotz gesunkener Immissionen zwischen 2015 und 2020 kaum zurückgegangen.

Die Bewertung der Gesundheitswirkungen mit den in Kapitel 2.6 aufgeführten Kostensätzen führt zu den in Abbildung 9 und Tabelle 10 dargestellten Kosten. Die Best-guess-Schätzung führt zu rund zweieinhalbmal höheren Kosten als die At-least-Schätzung.

Am meisten Kosten verursachen in beiden Varianten frühzeitige Todesfälle. Ihr Anteil ist allerdings bei der Best-guess-Schätzung deutlich höher. An zweiter und dritter Stelle folgen Tage mit eingeschränkter Aktivität und chronische Bronchitis bei Erwachsenen. Die Kosten der übrigen Gesundheitsfolgen fallen gering aus, so dass sie in Abbildung 9 nicht zu erkennen sind.

Bei Todesfällen und chronischer Bronchitis fallen die immateriellen Kosten sehr stark ins Gewicht (über 90% der Kosten pro Fall). Das heisst, das entstandene Leid spielt eine grosse Rolle bei der Bewertung. Bei den Tagen mit eingeschränkter Aktivität verursacht hingegen auch die tiefere wirtschaftliche Produktivität hohe Kostenanteile (über die Hälfte der Gesamtkosten).

Einschätzung Meltem Kutlar und Ron Kappeler (Swiss Tropical and Public Health Institute, Dokumentationsstelle Luft und Gesundheit LUDOK) basierend auf der aktuell zur Verfügung stehenden Literatur (mündlicher Austausch 7.12.2021)

		Einheit	Geschätzte Anzal	hl im Kanton Aargau
			2015	2020
Best-guess	Mortalität Erwachsene	Fälle	607	604
At-least	Mortalität Erwachsene	Fälle	157	156
Best-guess	Säuglingssterblichkeit	Fälle	1	1
und At-least	Spitaleintritte wegen Atemwegserkrankungen	Spitalein- tritte	60	60
	Spitaleintritte wegen Herz/Kreislauferkrankungen	Spitalein- tritte	24	24
	Inzidenz chronische Bronchitis bei Erwachsenen	Fälle	1245	1239
	Prävalenz von Bronchitis bei Kindern	Fälle	4533	4512
	Tage mit Asthmasymptomen bei Erwachsenen	Tage	4675	4653
	Tage mit Asthmasymptomen bei Kindern	Tage	10081	10034
	Tag mit eingeschränkter Aktivität bei Erwachsenen	Tage	560950	558304

Tabelle 9: Ergebnisse attributable Fälle im Kanton Aargau durch die PM2.5-Belastung, berechnet mit einem Schwellenwert von 5 μ g/m³ und einer langfristigen mittleren Belastung von 9.3 μ g/m³.

PM2.5-bedingte Gesundheitskosten

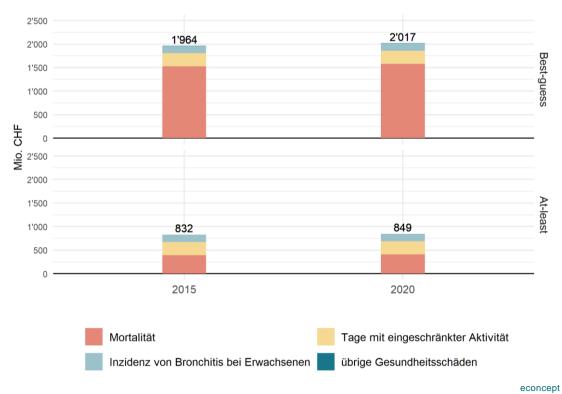


Abbildung 9: Schätzung PM2.5-bedingten Gesundheitskosten im Kanton Aargau in Mio. CHF. Die Kosten der übrigen Gesundheitsschäden sind vergleichsweise gering, so dass sie in der Abbildung nicht zu erkennen sind.

Tabelle 10: Schätzung PM2.5-bedingten Gesundheitskosten im Kanton Aargau in Mio. CHF

3.2 NO₂

Im Gegensatz zu den Schätzungen der luftschadstoffbedingten Gesundheitskosten mit PM2.5 stehen bei NO₂ nur Schätzer für zwei Gesundheitsfolgen zur Verfügung: frühzeitige Todesfälle bei Erwachsenen und Spitaleintritte wegen Atemwegserkrankungen.

Tabelle 11 zeigt die für den Kanton Aargau geschätzten luftschadstoffbedingten frühzeitigen Todesfälle und Spitaltritte für die beiden angewendeten Varianten Best-guess und Atleast (vgl. Kapitel 2.4).¹¹ Die Unterschiede zwischen den beiden Varianten sind bei NO₂ geringer als beim Feinstaub. Gleichzeitig ist der Rückgang der Fälle und Spitaleintritte über die Jahre bei NO₂ in beiden Varianten grösser als beim Feinstaub, da die NO₂-Immissionen stärker zurückgegangen sind als die Feinstaubimmissionen.

Die Multiplikation der Fälle und Spitaleintritte mit den entsprechenden Kostensätzen (vgl. Kapitel 2.6) ergibt die in und Abbildung 10 und Tabelle 12 dargestellten Kosten. Die Bestguess-Schätzung führt zu knapp eineinhalbmal höheren Kosten als die At-least-Schätzung.

Während beim Feinstaub mehrere Gesundheitsfolgen in relevantem Mass zur Kostenschätzung beitragen, fallen beim NO₂ ausschliesslich die frühzeitigen Todesfälle ins Gewicht. Deren Kosten bestehen hauptsächlich (zu über 90%) aus immateriellen Kosten, mit welchen das entstandene Leid bewertet wird.

¹¹ Das Zwischenresultat der geschätzten Gesundheitswirkungen pro 1 μg/m³ zusätzlicher Belastung ist in Tabelle 26 in Anhang A-6.2 ersichtlich.

		Einheit	Geschätzte Anzahl im Kan Aarg	
			2015	2020
Best-guess	Mortalität Erwachsene	Fälle	393	307
At-least	Mortalität Erwachsene	Fälle	257	200
Best-guess und At-least	Spitaleintritte wegen Atemwegserkrankungen	Spitaleintritte	109	85

Tabelle 11: Inputs und Ergebnisse attributable Fälle durch die NO_2 -Belastung, berechnet mit einem Schwellenwert von 10 μ g/m³ und einer langfristigen mittleren Belastung von 17.2 μ g/m³.

NO₂-bedingte Gesundheitskosten

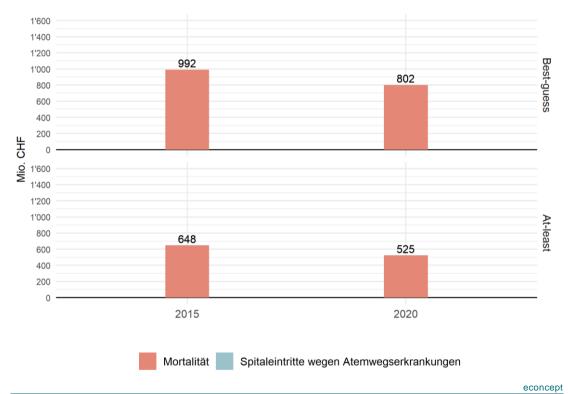
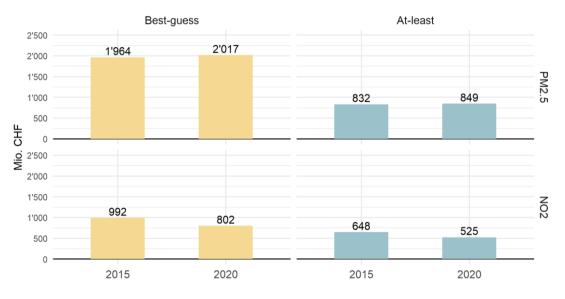


Abbildung 10: NO₂-bedingte Gesundheitskosten im Kanton Aargau in Mio. CHF. Die Kosten der Spitaleintritte sind relativ zu den mortalitätsbedingten Kosten so gering, dass sie in der Grafik nicht sichtbar sind.

	2015		2020	
	Best-guess	At-least	Best-guess	At-least
Mortalität gesamt	989.8	646.6	8.008	523.1
Verlorene Lebensjahre	941.8	615.2	762.6	498.2
Verlorene Erwerbsjahre	46.2	30.2	36.8	24.0
Wiederbesetzungskosten	1.7	1.1	1.4	0.9
Spitaleintritte wegen Atemwegserkrankungen	1.8	1.8	1.4	1.4
Total	991.6	648.4	802.2	524.5


Tabelle 12: Schätzung der Kosten in Mio. CHF

4 Fazit zu den luftschadstoffbedingten Gesundheitskosten im Kanton Aargau

4.1 Kosten und Determinanten der Kostenentwicklung

Die luftschadstoffbedingten Gesundheitskosten in den Jahren 2015 und 2020 im Kanton Aargau wurden anhand von den Schadstoffen PM2.5 und NO₂ ermittelt. Die Best-guess-Variante zeigt jeweils die nach aktuellem Kenntnisstand geschätzten Werte, welche jedoch Unsicherheiten nach oben und nach unten aufweisen, wobei von maximal +/- 25% Abweichung ausgegangen wird. Die At-least-Variante kann jeweils als Mindestwert interpretiert werden.

Kosten und Kostenentwicklung

econcept

Abbildung 11: Luftschadstoffbedingte Gesundheitskosten im Kanton Aargau 2015 und 2020.

Da sich die Gesundheitswirkungen der betrachteten Stoffe nicht abgrenzen lassen, dürfen die Ergebnisse nicht addiert werden.

An den ausgewiesenen Kosten haben jeweils luftschadstoffbedingte frühzeitige Todesfälle hohe Anteile. Besonders gilt dies für die Best-guess-Schätzungen sowie für die NO₂-bedingten Kosten. Weitere kostenrelevante Gesundheitswirkungen sind chronische Bronchitis bei Erwachsenen sowie Tage mit eingeschränkter Aktivität.

Die ausgewiesenen Kosten setzen sich aus Behandlungskosten, Produktionsausfällen und immateriellen Kosten zusammen, mit welchen das aus frühzeitigen Todesfällen und Krankheiten entstehende Leid bewertet wird. Insbesondere bei der Best-guess-Variante und

Die statistische Unsicherheit der Best-guess-Schätzung beträgt +/- 21% für PM2.5 sowie +/- 18% für NO₂. Nebst der statistischen Unsicherheit bestehen in geringem Masse Unsicherheiten bei der Immissionsmodellierung und den Annahmen, die sich jedoch nicht exakt beziffern lassen. Insgesamt wird daher von einem Unsicherheitsbereich von rund 25% ausgegangen.

beim NO₂ fallen die immateriellen Kosten mit Anteilen von rund 80% bis 95% sehr stark ins Gewicht. Es handelt sich folglich um Kosten, die nicht in Wertschöpfungs- oder Haushaltsstatistiken auftauchen, was sie jedoch nicht minder relevant macht.

Während die NO₂-bedingten Gesundheitskosten zwischen 2015 und 2020 zurückgegangen sind, zeigt sich bei PM2.5 ein Anstieg. Dies liegt an der unterschiedlichen Entwicklung der Bevölkerungsbelastung: Die NO₂-Belastungen sind genügend gesunken, um die kostentreibende Wirkung des Bevölkerungswachstums und des Anstiegs der Kostensätze für verlorene Lebens- und Erwerbszeit mehr als auszugleichen (Abbildung 12). Bei PM2.5 überwiegen jedoch die kostensteigernden Effekte, so dass trotz Rückgang der Belastung ein Anstieg der Kosten zu verzeichnen ist.

Determinanten der Kostenentwicklung



Abbildung 12: Determinanten der Kostenentwicklung. Veränderung zwischen 2015 und 2020.

4.2 Nutzen der Verbesserung der Luftqualität

Der durch die Verbesserung der Luftqualität bedingte Rückgang der Kosten der Luftverschmutzung stiftet Nutzen. Dieser kann beziffert werden, indem berechnet wird, wie hoch die Kosten bei gleichbleibend hohem Belastungsniveau gewesen wären. Die Differenz zwischen den Kosten mit gleichbleibend hohem Belastungsniveau und mit dem tatsächlichen, sinkenden Belastungsniveau ergibt den Nutzen der Verbesserung der Luftqualität.

Abbildung 13 zeigt die Kostenschätzungen 2020, berechnet mit der tatsächlichen Belastungsentwicklung und mit gleichbleibend hohen Belastungen (Belastungsniveau 2015). Aus der Differenz ergeben sich jeweils die dank der Verbesserung der Luftqualität vermiedenen Gesundheitskosten (Abbildung 14), womit sich der Teil des Nutzens der Verbesserung der Luftqualität beziffern lässt, welcher auf vermiedene Gesundheitsschäden zurückgeht. Weiterer Nutzen entsteht dank vermiedenen Wald-, Biodiversitäts- und Gebäudeschadenskosten sowie Ernteausfälle. Wie auch die Kosten dürfen die für die verschiedenen Schadstoffe ausgewiesenen Nutzen nicht addiert werden, da die Gesundheitswirkungen nicht abgegrenzt werden können.

Luftschadstoffbedingte Gesundheitskosten mit tatsächlicher und früherer Belastung

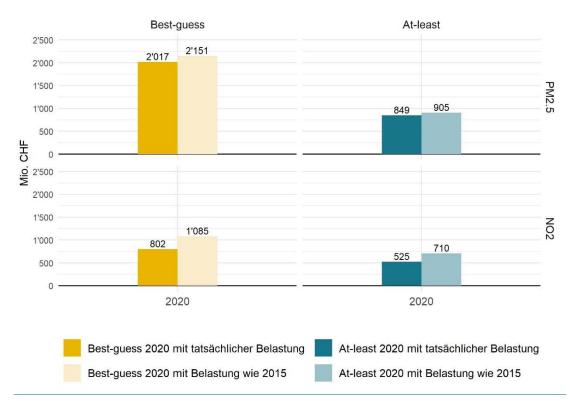
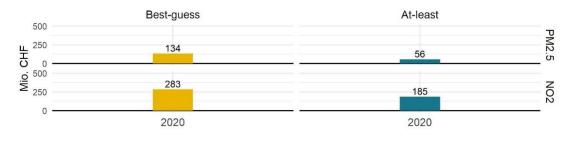



Abbildung 13: Luftschadstoffbedingte Gesundheitskosten im Jahr 2020 ermittelt mit den tatsächlichen Belastungen (jeweils dunkel gefärbt) und mit den Belastungen, wie sie im Jahr 2015 waren (jeweils hell gefärbt). Die Differenzen zwischen hellen und dunklen Balken können als vermiedene Kosten interpretiert werden.

Dank der Senkung der Schadstoffbelastung vermiedene Kosten

econcept

Abbildung 14: Dank der Senkung der Schadstoffbelastung vermiedene Kosten. Um die dargestellten Beträge höher wären die luftschadstoffbedingten Gesundheitskosten im Jahr 2020, wenn die Schadstoffbelastungen noch immer auf dem Niveau von 2015 läge.

5 Aufteilung auf die Verursachergruppen

5.1 Vorgehen

Die ermittelten luftschadstoffbedingten Gesundheitskosten werden auf Basis des kantonalen Emissionskatasters (Meteotest/Infras, 2017) ihren Verursachergruppen zugeordnet. Sowohl die anhand der Best-guess Variante ermittelten PM2.5-bedingten Gesundheitsschadenskosten, als auch die anhand der Best-guess Variante ermittelten NO₂-bedingten Gesundheitskosten werden auf die Verursachergruppen aufgeteilt. Hierfür wird für die Aufteilung der Gesundheitsschadenskosten auf die Verursachergruppen die Anteile der Verursachergruppen an den Gesamtemissionen des betrachteten Schadstoffes im Jahr 2020 verwendet.

5.2 Ergebnisse

Abbildung 15 sowie Tabelle 13 und Tabelle 14 zeigen die Aufteilung der PM2.5- und NO₂-bedingten Gesundheitsschadenskosten auf die Verursachergruppen im Jahr 2020.

An den PM2.5-bedingten Gesundheitskosten haben die Verursachergruppen *Haushalte und Dienstleistungen* mit 44% (hauptsächlich Holzfeuerungen) und *Industrie und Gewerbe* mit 28% die grössten Anteile. Auch die Verursachergruppe *Verkehr* trägt mit 19% wesentlich zu den PM2.5-bedingten Gesundheitsschadenskosten bei. Der *Land- und Forstwirtschaft* werden mit 9% ein vergleichsweise geringer Anteil an den PM2.5-bedingten Gesundheitsschadenskosten zugeordnet.

Anders als beim PM2.5 verursacht beim NO₂ der *Verkehr* mit 44% den grössten Anteil der Gesundheitskosten, dicht gefolgt von der Verursachergruppe *Industrie und Gewerbe* mit 40%. Die Verursachergruppen *Haushalte und Dienstleistungen* und *Land- und Forstwirtschaft* weisen hingegen mit 11% und 4% vergleichsweise kleine Anteil aus.

	2020 Anteil	
Verkehr	19%	383
Industrie und Gewerbe	28%	565
Haushalte und Dienstleistungen	44%	888
Land-/Forstwirtschaft	9%	182
Total	100%	2017

Tabelle 13: Anteile der Verursachergruppen an den anhand der Best-guess Variante geschätzten PM2.5bedingten Gesundheitsschadenskosten für das Jahr 2020. Quelle Anteile aus Emissionskataster (Meteotest/Infras, 2017)

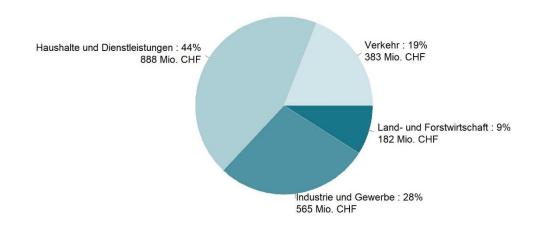
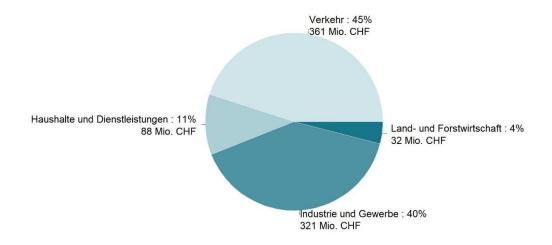

	2020 Anteil	Mio. CHF
Verkehr	45%	361
Industrie und Gewerbe	40%	321
Haushalte und Dienstleistungen	11%	88
Land-/Forstwirtschaft	4%	32
Total	100%	802

Tabelle 14: Anteile der Verursachergruppen an den anhand der Best-guess Variante geschätzten NO₂-bedingten Gesundheitsschadenskosten für das Jahr 2020.


Quelle Anteile aus Emissionskataster (Meteotest/Infras, 2017)

Aufteilung auf die Verursachergruppen im Jahr 2020

PM2.5

NO₂

econcept

Abbildung 15: Aufteilung der Gesundheitskosten der Luftverschmutzung auf die Verursachergruppen im Jahr 2020. Ergebnisse gerundet. Die Frankenbeträge gelten unter Verwendung der anhand der Best-guess Variante geschätzten Gesundheitsschadenskosten.

Anhang

A-1 Begriffserklärungen

At-least-Variante

Mit dem Begriff At-Least-Variante wird die Berechnungsvariante der luftschadstoffbedingten Gesundheitskosten bezeichnet, bei welcher aus den möglichen Wertebereichen der Berechnungsparameter jene Werte ausgewählt werden, welche mit hoher Wahrscheinlichkeit *nicht* zu einer Überschätzung, sondern eher zu einer Unterschätzung der Luftschadstoffbedingten Gesundheitskosten führen.

Attributable Fälle

Krankheits- oder Todesfälle, welche der Luftverschmutzung zugerechnet werden. Siehe auch Berechnungsbeispiel in Anhang A-5.

Best-guess-Variante

Mit dem Begriff Best-guess-Variante wird die Berechnungsvariante der luftschadstoffbedingten Gesundheitskosten bezeichnet, bei welcher aus den möglichen Wertebereichen der Berechnungsparameter jene Werte ausgewählt werden, welche nach aktuellem Kenntnisstand die wahrscheinlich richtigen sind, jedoch Unsicherheitsbereiche sowohl nach oben als auch nach unten bestehen.

Dosis-Wirkungs-Relation

Ein auf Basis empirischer, epidemiologischer Erhebungen geschätzter Zusammenhang zwischen Schadstoffkonzentration und Gesundheitsfolgen (wie z.B. Tage mit Asthma-Symptomen, chronische Bronchitis, Mortalität).

Effektschätzer

Im vorliegenden Kontext zeigt der Effektschätzer, mit wie viel höherer Wahrscheinlichkeit eine Gesundheitsfolge auftritt, wenn die Schadstoffkonzentration zunimmt. Meist wird der Effektschätzer für eine Zunahme von 10 µg/m³ angegeben:

Effektschätzer = P (Auftreten Gesundheitsfolge | bei Referenzkonzentration + 10 μ g/m³) / P (Auftreten Gesundheitsfolge | bei Referenzkonzentration)

Rechenbeispiel:

Gesundheitsfolge = Chronische Bronchitis

Referenzkonzentration = $5 \mu g/m^3$

Schadstoffkonzentration = 25 µg/m³

Effektschätzer = 1.167

Unter Verwendung dieser Parameterwerte gilt: Bei einer Schadstoffkonzentration von $25 \mu g/m^3$ ist die Wahrscheinlichkeit für chronische Bronchitis 1.36 (=1.167^2) mal höher als bei der Referenzkonzentration von $5 \mu g/m^3$.

Immaterielle Kosten

Immaterielle Kosten bewerten das durch Krankheit oder verlorene Lebensjahre entstandene Leid. Ihre Höhe wird mittels spezieller Befragungs- und Auswertungsverfahren (Stated Preference Methods) erhoben. Ihnen liegen folglich keine tatsächlichen Mittelflüsse und/oder Wertschöpfungsverluste zugrunde, was sie jedoch nicht minder relevant macht.

Inzidenzrate

Anzahl neuerkrankte Personen in einem bestimmten Zeitraum.

Konfidenzintervall

Ein Konfidenzintervall veranschaulicht den statistischen Unsicherheitsbereich eines Parameterwertes, welcher auf Basis einer Stichprobe geschätzt wurde. Das Konfidenzintervall zeigt den Wertebereich des Parameters, welcher unter Verwendung eines statistischen Modells (z.B. Annahme einer Normal-Verteilung) mit den in der Stichprobe vorhandenen Daten vereinbar ist. Bei einem 95%-Konfidenzintervall gilt: Mit einer Wahrscheinlichkeit von 95% ist der wahre Parameterwert im Konfidenzintervall enthalten.

Prävalenzrate

Anzahl erkrankte Personen in einem bestimmten Zeitraum.

Sensitivitätsanalyse

Mit der Sensitivitätsanalyse werden Parameterwerte innerhalb ihre möglichen Wertebereiches variiert, um Aufschluss über die Unsicherheit der Ergebnisse zu erhalten. Im vorliegenden Fall werden für die Sensitivitätsanalysen die Effektschätzer variiert, indem die unteren und oberen Grenzen ihrer 95%-Konfidenzintervalle verwendet werden.

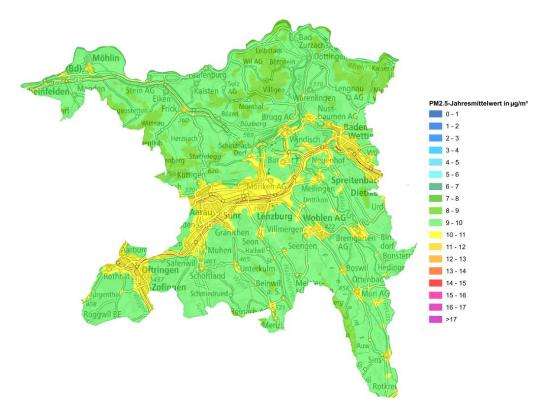
Statistische Unsicherheit

Die statistische Unsicherheit bezeichnet jenen Unsicherheitsbereich eines Messwertes, welcher auf die Erhebung mittels Stichprobe und/oder auf zufällige Schwankungen des Wertes zurückgeht. Der statistische Unsicherheitsbereich der Effektschätzer ergibt sich somit daraus, dass sie auf Stichprobenmessungen von Gesundheitsfolgen und Luftschadstoffkonzentrationen basieren. Mögliche systematische Erhebungsfehler sind in der statistischen Unsicherheit nicht enthalten.

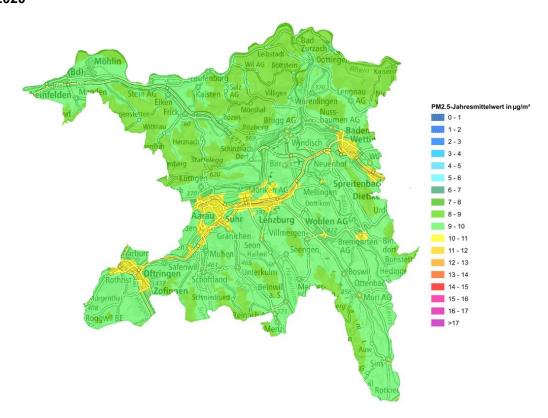
A-2 Emissionen

Quelle: Luftschadstoff-Emissionen Kanton Aargau, Technischer Bericht zur Emissionsbilanz und zum Emissionskataster. Meteotest/Infras (2017):

		2015 [t/a]	2020 [t/a]
Verkehr			
Nationalst	rassen (innerorts und	ausserorts)	
NO _x		1'674	1'270
PM2.5	exhaust	36	20
	non-exhaust	19	20
Kantons- u	ınd Gemeindestrasse	n innerorts inkl. Zonenverkehr	
NO _x		945	697
PM2.5	exhaust	21	12
PM2.5	non-exhaust	18	19
Kantons- u	ınd Gemeindestrasse	n ausserorts	
NO _x		798	60
PM2.5	exhaust	15	
	non-exhaust	7	
Bahnverke	hr		
NO _x		46	4:
	exhaust	0	
	non-exhaust	25	2
Ziviler Flu		-	
NO _x		1	
	exhaust	0	
	non-exhaust	0	
	d Dienstleistungen		·
	erungen ≤1 MW FWL		
NO _x	ge	359	340
	exhaust	2	
	non-exhaust	0	
	erungen >1 MW FWI		
NO _x	orangon > 1 mili 1 mil	17	1
	exhaust	0	
	non-exhaust	0	
	zfeuerungen (<70 kW	_	'
NO _x	Ziederdingen (<70 kV	161	19
	exhaust	167	16
	non-exhaust	0	
	ungen (≥70 kW FWL)	0.4	
NO _x		84	
	exhaust	45	4
	non-exhaust	0	
	d Feuerschäden	<u> </u>	
NO _x		5	
	exhaust	29	
	non-exhaust	0	
	obby-Geräte		
NO _x		6	
	exhaust	1	
	non-exhaust	0	
Lösungsm	ittel, Feuerwerk		
NO _x		0	
PM2.5	exhaust	14	18
PM2.5	non-exhaust	0	

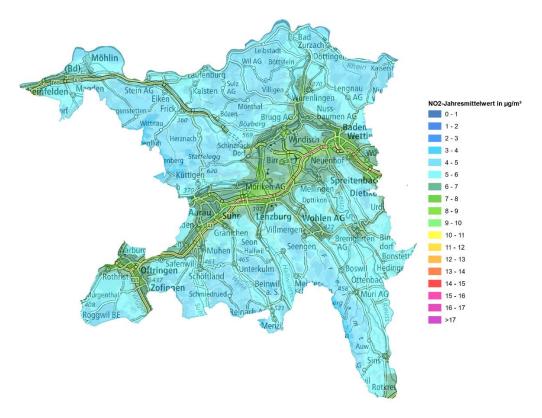

dustrie und			
Einzelquell	en Uplus		
NO _x		1'650	1'6
PM2.5 e	xhaust	27	
PM2.5 n	on-exhaust	0	
	strielle und gewerbliche	Prozesse	
NO _x	9	361	5
.			
PM2.5 e		42	
	on-exhaust	55	
	anlagen, Kompostierung	, ARA, Kehrichtdeponien	
NO _x		27	
PM10 no	on-exhaust	0	
PM2.5 e	xhaust	0	
Industriefal			
NO _x		46	
PM2.5 e	yhouet	2	
	on-exhaust	0	
	nen (Abbaustellen, übrig	e)	
NO _x		164	
PM2.5 e	xhaust	3	
	on-exhaust	24	
nd- und For			
	naftliche Fahrzeuge/Gerä	ite	
NO _x		161	1
	vila a via t		1
PM2.5 e		18	
	on-exhaust	16	
Forstwirtscl	naftliche Fahrzeuge/Gerä	ite	
NO _x		5	
PM2.5 e	xhaust	0	
PM2.5 n	on-exhaust	0	
Kühe			
NO _x		20	
PM2.5 e		0	
	on-exhaust	1	
übriges Rin	dvieh		
NO _x		11	
PM2.5 e	xhaust	0	
PM2.5 n	on-exhaust	0	
Schweine			
NO _x		4	
	, h e , i e t		
PM2.5 e		0	
	on-exhaust	4	
Mastpoulet	5		
NO _x		5	
PM2.5 e	xhaust	0	
	on-exhaust	0	
	Zuchthennen		
NO _x	-	7	
	yhouet		
PM2.5 e		0	
	on-exhaust	17	
	Pferde, Schafe, Ziegen)		
NO _x		4	
PM2.5 e	xhaust	0	
	on-exhaust	0	
Nutzflächer		-	
	-	52	
NO _x			
PM2.5 e		0	
	on-exhaust	0	
Offene Verl	orennung (Abfälle)		
NO _x		2	
	xhaust	5	

A-3 Immissionen

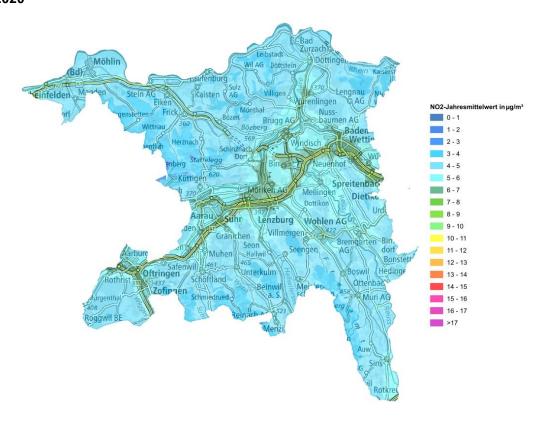

Quelle: BAFU Modell Pollumap, basierend auf Infras/Meteotest (2020)

A-3.1 PM2.5-Immissionen

2015



2020



A-3.2 NO₂-Immissionen

2015

2020

A-4 Bevölkerungsexposition

Quelle für Bevölkerungszahlen: BFS (kleinräumig aggregierte Bevölkerungszahlen aus der Statistik der Bevölkerung und der Haushalte, STATPOP)

A-4.1 PM2.5

-	Anzahl Personen		
[µg/m³]	2015	2020	Differenz
8	40	135	95
9	31'427	109'460	78'033
10	504'656	558'770	54'114
11	110'840	20'803	-90'037
12	2'148	778	-1'370
13	342	24	-318
14	2	26	24
15	30	0	-30

Tabelle 16: Bevölkerungsexposition mit PM2.5

A-4.2 NO₂

	Anzahl Personen		
[µg/m³]	2015	2020	Differenz
9	8	0	8
10	83	5	78
11	462	30	432
12	4788	201	4'587
13	19114	788	18'326
14	68659	5'776	62'883
15	83964	17'658	66'306
16	119128	56'300	62'828
17	120051	69'884	50'167
18	118430	87'498	30'932
19	57308	89'005	-31'697
20	46722	115'067	-68'345
21	21312	68'205	-46'893
22	13932	50'910	-36'978
23	6710	30'695	-23'985
24	4009	23'533	-19'524
25	1704	10'463	-8'759
26	1164	9'284	-8'120
27	472	4'947	-4'475
28	623	3'360	-2'737
29	277	1'584	-1'307
30	288	1'235	-947
31	156	698	-542
32	95	499	-404
33	111	305	-194
34	235	371	-136
35	49	159	-110
36	18	224	-206
37	13	82	-69
38	0	159	-159
39	6	26	-20
40	5	93	-88
41	2	54	-52

	Anzahl Personen							
[µg/m³]	2015	2020	Differenz					
42	34	213	-179					
43	0	26	-26					
44	0	23	-23					
45	0	6	-6					
46	0	13	-13					
47	0	8	-8					
48	0	28	-28					
50	17	37	-20					
51	0	1	-1					
53	26	0	26					
54	2	0	2					
58	19	0	19					
66	0	2	-2					
67	0	30	-30					

Tabelle 17: Bevölkerungsexposition im Kanton Aargau mit NO_2

A-5 Berechnungsbeispiel Attributable Fälle

Als attributable Fälle werden Krankheits- und Todesfälle bezeichnet, welche auf die Luftverschmutzung zurückgeführt werden. Im Projekt werden attributable Fälle mit zwei unterschiedlichen Bezugspunkten berechnet und ausgewiesen:

- 1 Attributablen Fälle pro Belastungszunahme pro 100'000 Einwohner. Diese zeigen, wie viel mehr Krankheits- und Todesfälle durch zusätzliche Luftbelastung entstehen.
- 2 Berechnung der attributablen im Kanton Aargau. Diese zeigen, wie viele Krankheitsund Todesfälle im Kanton Aargau der Luftverschmutzung zuzuordnen sind.

Schritt 1 ist Voraussetzung für Schritt 2.

Berechnung der attributablen Fälle pro Belastungszunahme

Abbildung 16 zeigt das Vorgehen und die Berechnungsinputs. Die attributablen Fälle pro Belastungszunahmen werden mittels Dosis-Wirkungs-Relationen (Effektschätzer) auf Basis der aktuellen mittleren Belastungen sowie der aktuellen Inzidenz- und Prävalenzraten berechnet. Weiter gehen schadstoffspezifische Schwellenwerte in die Berechnung ein, ab welchen von einer gesundheitsschädlichen Wirkung auszugehen ist. Da schweizweite (und nicht kantonale) Inzidenz- und Prävalenzraten als Berechnungsinput dienen, beziehen sich die attributablen Fälle pro Belastungszunahmen auf die gesamte Schweiz.

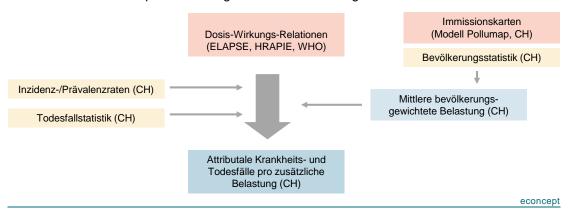


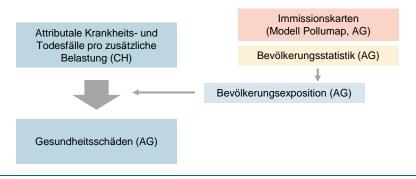
Abbildung 16: Schätzung der attributablen Fälle pro Belastungszunahme

Es folgt ein Berechnungsbeispiel für PM2.5-bedingte Todesfälle¹³.

¹³ Die Erläuterungen orientieren sich an ARE 2004.

	Berechnungsinputs	Wert
E	Effektschätzer pro 10 μg/m³ zusätzlicher Belastung	1.26
C ₀	Schwellenwert, ab welchen von einer gesundheitsschädlichen Wirkung ausgegangen wird	5 µg/m³
Св	Mittlere Belastung in der Schweiz	9.3 µg/m³
P _B	Rate in der Bevölkerung pro 100`000 pro Jahr (alle Todesfälle, nicht nur Luftverschmutzung)	775

Tabelle 18: Berechnungsinputs


Mit der schweizweit mittleren PM2.5-Belastung von 9.3 μ g/m³ traten im Mittel in der Schweiz 775 Todesfälle pro 100'000 Einwohner auf. Mitthilfe des Effektschätzers lässt sich ermitteln, wie viele es mit einer Belastung von nur 5 μ g/m³ (entspricht dem Schwellenwert) gewesen wären. Dieser Wert wird auch als Basisprävalenz P_0 bezeichnet.

$$P_0 = \frac{P_B}{1 + (E - 1) * \frac{C_B - C_0}{10}} = \frac{775}{1 + (1.26 - 1) * \frac{9.3 - 5}{10}} = \frac{775}{1.1118} = 697$$

Die Überschreitung des Schwellenwertes um $4.3~\mu g/m^3$ führt demnach zu 78~(=775-697) zusätzlichen Todesfällen pro 100'000~Einwohner. Pro $10~\mu g/m^3~Überschreitung$ des Schwellenwertes ergibt dies 181~Todesfälle, welche der PM2.5-Belastung zuzurechnen sind. Diese werden als attributable Fälle pro Belastungszunahme bezeichnet. Da in die Berechnung schweizweite Mittelwerte eingehen (tatsächliche Belastung, Anzahl Todesfälle pro 100'000~Einwohner), gilt der berechnete Wert nicht spezifisch für den Kanton Aargau, sondern für die ganze Schweiz.

Attributable Fälle im Kanton Aargau

Auf Basis der im vorangehenden Schritt geschätzten attributablen Todesfälle pro Belastungszunahme können nun die im Kanton durch die PM2.5-Belastung verursachten Todesfälle geschätzt werden. Abbildung 17 zeigt das Vorgehen. Zusätzlich zu den attributablen Krankheits- und Todesfällen pro Belastungszunahme wird die Bevölkerungsexposition benötigt, welche die Anzahl Personen pro Belastungskategorien bzw. pro PM.25-Konzentration zeigt (vgl. Abbildung 7 in Kapitel 2.3).

econcept

Anhand der Bevölkerungsexposition ist ersichtlich, wie gross die Überschreitungen des Schwellenwertes sind und wie viele Personen von den jeweiligen Überschreitungen betroffen sind. Die Schätzung der attributablen Fälle im Kanton erfolgt, indem die Schwellenwertüberschreitungen über die gesamte Bevölkerung aufsummiert werden. Anschliessend erfolgt die Multiplikation mit den attributablen Fällen pro Belastungszunahme, wobei auf die Einheiten (pro 10 µg/m³ und pro 100'000 Einwohner) zu achten ist. Es resultieren die attributablen Fälle im Kanton Aargau:

		Einheit	Geschätzte Anzahl d bedingte Todesfälle im Kar	
			2015	2020
Best-guess	Mortalität Erwachsene	Fälle	607	604

Tabelle 19: Ergebnisse attributable Fälle im Kanton Aargau durch die PM2.5-Belastung.

Die Anzahl Todesfälle insgesamt betrug im Kanton Aargau 4'711 im Jahr 2015 und 5'517 im Jahr 2020. 14 Somit lassen sich 13% (im Jahr 2015) respektive 11% (im Jahr 2020) mit Luftverschmutzung assoziieren. Die Anzahl im Mittel verlorenen Lebensjahre beträgt 9.96 (vgl. Anhang A-6.4).

¹⁴ Bundesamt für Statistik (BFS), Statistik der natürlichen Bevölkerungsbewegung (BEVNAT), Todesfälle nach Kanton und Geschlecht, 1970-2020. https://www.bfs.admin.ch/bfs/de/home/statistiken/bevoelkerung/qeburten-todesfaelle/todesfaelle.html

A-6 Berechnungsinputs und Zwischenergebnisse

A-6.1 Dosis-Wirkungs-Relationen

Die untenstehenden Tabellen zeigen die im Zuge des Projektes gesichteten Dosis-Wirkungs-Relationen, aus denen die schliesslich verwendeten Schätzer ausgewählt wurden (vgl. Kapitel 2.4). Wenn nicht anders angegeben beziehen sie sich auf eine Erhöhung der Schadstoffkonzentration um 10 $\mu g/m^3$.

Generell wurde in der ELAPSE 2021 Studie eine supralineare Beziehung bei den Belastungs-Wirkungs-Beziehungen gemessen wie in Abbildung 18 ersichtlich. Da die ausgewiesenen Schätzer allerdings auf einer linearen Schätzung basieren und für den Kanton Aargau die Belastung nicht am rechten Rand von Abbildung 18 ist, wurden die Gesundheitsauswirkungen der Schadstoff-Belastung anhand einer linearen Relation geschätzt.

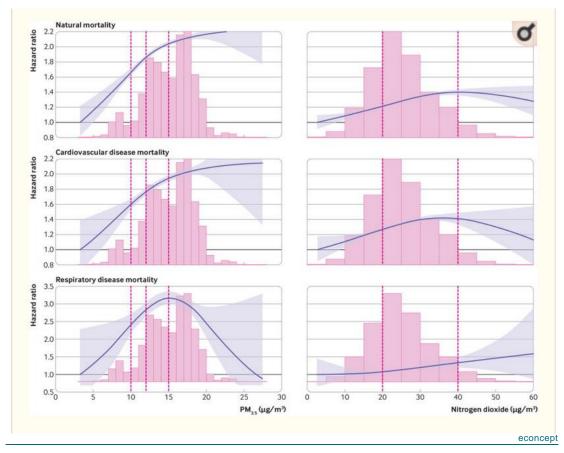


Abbildung 18: Lineare bis supralineare Dosis-Wirkungs-Relationen. Quelle: ELAPSE 2021.

A-6.1.1 Feinstaub

Die grauen, eingerückten Schätzwerte beziehen sich auf die in der obenstehenden Metastudie betrachteten Studien. Wenn zwei Mediankonzentrationen angegeben sind, bezieht sich der obere Wert auf WHO (2021) und der untere, kursive Wert auf Chen & Hoek (2020).

Sc	hätzer	Datengrundlage	Mittlere Belas- tung [µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung
1.06	62			Hoek et al. (2013)	Langzeit	HRAPIE 2013 COMEAP 2020	Metaanalyse, 13 Studien
1.13	3	Region: Europ. Kohorten Studien (Schweden, Dä- nemark, Niederlanden, Frankreich, Deutschland, Österreich)Alter: Durch- schnitt 42-73. N: 325'367	Durch- schnitt (SD): 15.02 (3.22)	Strak M, Weinmayr G, Rodopoulou S, Chen J, de Hoogh K et al. (2021)	Langzeit	ELAPSE 2021	Effektschätzer bezieht sich auf eine Erhöhung um 5 μgPM2.5/m³. Konfidenzintervalle: (1.106, 1.155)
1.08	3			Chen & Hoek (2020)	Langzeit	WHO 2021	Metaanalyse, 25 Studien. Verlässlichste Studie wies linearen Zusammenhang aus.
		eliegende Studien Chen & H	, ,				
	1.26	Region: Kanada Alter:25-90 N:299'500	6.32	Pinault et al. (2016)	Langzeit		
	1.16	Region: Kanada Alter:25-90 N:2`291`250	6.5	Cakmak et al. (2018)	Langzeit		
	1.18	Region: Kanada Alter: 25-90 N:2'448'500	7.37	Pinault et al. (2017)	Langzeit		
	0.95	Region: Iowa, North Carolina Alter: - N: 83`378	9.5	Weichenthal et al. (2014)	Langzeit		
	1.12	Region: Kanada Alter: 40-59 N:89`835	9.1	Villeneuve et al. (2015)	Langzeit		
	1.08	Region: USA Alter: 65+ N: 60`925`443	11	Di et al. (2017a)	Langzeit		
	1.03	Region: USA Alter: 25+ N: 657`238	11.8	Parker, Kravets & Vaidyanathan (2018)	Langzeit		
	1.08	Region: USA Alter: - N: 1`729`108	11.8	Bowe et al. (2018)	Langzeit		
	1.13	Region: USA	12.0	Hart et al.	Langzeit		

/irkung Fe	instaubbelastung: Mortalitä	it, PM2.5-ba	asierte Dosis-Wi	rkungs-Re	lationen	
chätzer	Datengrundlage	Mittlere Belas- tung [µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung
	Alter: 54-79 N: 108`767		(2015)			
1.07	Region: Iowa, North Carolina Alter: 30+ N: 669'046	12.6	Turner et al. (2016)	Langzeit		
1.11	Region: England Alter: 40-89 N: 835'607	12.9	Carey et al. (2013)	Langzeit		
1.14	Region: Europa Alter: - N: 367'251	13.4	Beelen et al. (2014)	Langzeit		
1.03	Region: USA Alter: 50-71 N: 517'041	12.2	Thurston et al. (2016a)	Langzeit		
1.1	Region: USA Alter: Durchschnitt 42 N: 53'814	14.1	Hart et al. (2011)	Langzeit		
1.14	Region: USA Alter: 25-74 N:8'096	15.9	Lepeule et al. (2012)	Langzeit		
1.16	Region: Frankreich Alter: - N: 20`327	17.0	Bentayeb et al. (2015)	Langzeit		
0.86	Region: USA Alter: 40-75 N: 17'545	17.8	Puett et al. (2011)	Langzeit		
1.01	Region: Kalifornien Alter: <=30 N: 101'884	17.9	Ostro et al. (2015)	Langzeit		
1.05	Region: Rom Alter: 30+ N: 1'249'108	19.6	Badaloni et al. (2017)	Langzeit		
1.01	Region: Kalifornien Alter: 43-99 N: 35'783	23.4	Enstrom (2005)	Langzeit		
1.06	Region: Holland Alter: 55- 69 N: 120'852	28.3	Beelen et al. (2008)	Langzeit		
0.92	Region: Taiwan Alter: - N: 43`227	29.6	Tseng et al. (2015)	Langzeit		
1.09	Region: China Alter: 40+ N: 189`793	43.7	Yin et al. (2017)	Langzeit		
1.06	Region: Hong Kong Alter: 65+ N: 66'820	42.2	Yang et al. (2018)	Langzeit		
1.09	Region: Kalifornien	31.9	McDonnell et	Langzeit		

Wirkung Feinstaubbelastung: Mortalität, PM2.5-basierte Dosis-Wirkungs-Relationen									
Schätzer	Datengrundlage	Mittlere Belas- tung [µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung			
	Alter: 27+ N: 1,266		al. (2000)						

Tabelle 20: Wirkung $PM_{2,5}$. Effektschätzer: Anstieg des relativen Risikos (RR) pro Anstieg der Belastung um $10 \ [\mu g/m^3]$ (wenn nicht anders angegeben).

Sch	ätzer	Datengrundlage	Me- dian/Durch- schnitts-Be- lastung [µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung
.04				Chen & Hoek (2020)	Langzeit	WHO 2021	Metastudie, 17 Studien, nur eine Studie wies CRF aus, welche keine signifikante Abweichung von einer linearen Relation fand.
	Zugrunde	eliegende Studien Chen	& Hoek (2020)				
	1.07	Region: England Alter: 40-89 N: 835,607	19.7	Carey et al. (2013)	Langzeit		
	1.24	Region: England Alter: Alle N: 367`658	20.7	Hansell et al. (2016)	Langzeit		
	1.04	Region: Europa Alter: - N: 367`251	20.9	Beelen et al. (2014)	Langzeit		
	1.16	Region: USA Alter: 30-55 N: 66`250	21.6	Puett et al. (2008)	Langzeit		
	1.18	Region: Frankreich Alter: - N: 20`327	25.0	Bentayeb et al. (2015)	Langzeit		
	1.07	Region: USA Alter: Durchschnitt 42 N: 53`814	26.8	Hart et al. (2011)	Langzeit		
	0.92	Region: USA Alter: 40-75 N: 17`545	27.9	Puett et al. (2011)	Langzeit		
	1.09	Region: USA Alter: 25-74 N: 8`111	28.9	Dockery et al. (1993)	Langzeit		
	1.08	Region: Holland Alter: 30+ N: 7`218`363	29.0	Fischer et al. (2015)	Langzeit		
	1.00	Region: Kalifornien Alter: - N: 101`784	29.2	Lipsett et al. (2011)	Langzeit		
	0.98	Region: Japan	34.9	Ueda et al.	Langzeit		Mit PM ₇ geschätzt

	Alter: 30+ N: 73`094		(2012)			
1.02	Region: Rom Alter: 30+ N: 1`249`108	36.6	Badaloni et al. (2017)	Langzeit		
1.22	Region: Deutschland Alter: 50-59 N: 4`752	43.7	Heinrich et al. (2013)	Langzeit		
1.01	Region: Kalifornien Alter: 27-95 N: 6`338	51.2	Abbey et al. (1999)	Langzeit		
1.05	Region: Süd Korea Alter: 20-65 N: 275`337	56.0	Kim, Kim & Kim (2017)	Langzeit		
1.02	Region: China Alter: 40+ N: 71`431	104.0	Zhou et al. (2014)	Langzeit		
1.01	Region: China Alter: 23+ N:39`054	144.0	Chen et al. (2016)	Langzeit		

Tabelle 21: Wirkung PM_{10} . Effektschätzer: Anstieg des relativen Risikos (RR) pro Anstieg der Belastung um 10 [μ g/m³].

Die grauen, eingerückten Schätzwerte beziehen sich auf die in der obenstehenden Metastudie betrachteten Studien.

Tabelle 22: Wirkung PM_{2,5}. Effektschätzer: Anstieg des relativen Risikos (RR) pro Anstieg der Belastung um 10 [μg/m³].

Wirkung	Feinstaub: Weitere Ge	sundheitswirk	kungen PM10-ba	sierte Dos	is-Wirkungs-	Relationen
Schät- zer	Datengrundlage	Me- dian/Durch- schnitts-Be- las- tung[µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung
Säugling	ssterblichkeit					
1.040	4 Millionen Säugling in USA		Woodruff, Grillo & Scho- endorf (1997)	Langzeit	HRAPIE 2013	Metaanalyse
1.18	3.5 Millionen Säugling in USA		Woodruff, Darrow & Par- ker (2008)	Langzeit	HRAPIE 2013	Säuglingssterblichkeit aufgrund von Atemwegerkran- kung, nicht empfohlen, wenn keine spezifischen To- desstatistiken dazu vorhan- den.
Inzidenz	z chronische Bronchiti	s bei Erwachs	enen			
1.117	Kalifornien, Schweiz		AHSMOG, SAPALDIA	Langzeit	HRAPIE 2013	Metaanalyse, 2 Studien
Prävale	nz von Bronchitis bei P	Kindern				
1.08	40`000 Kinder aus 9 Ländern		PARTY study, Hoek et al. 2012	Langzeit	HRAPIE 2013	Metaanalyse, hetrogene Effekte in verschiedenen Studien
Tage mi	t Asthmasymptomen b	ei Erwachsen	en			
1.029					ARE 2014	Metaanalyse von 6 europäischen Studien
Tage mi	t Asthmasymptomen b	ei Kindern				

Wirkung Feinstaub: Weitere Gesundheitswirkungen PM10-basierte Dosis-Wirkungs-Relationen									
Schät- zer	Datengrundlage	Me- dian/Durch- schnitts-Be- las- tung[µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung			
1.028	51 Länder, 36 in Europa		Weinmayr et al. (2010)	Kurzzeit	HRAPIE 2013	Metaanalyse			

Tabelle 23: Wirkung PM_{10} . Effektschätzer: Anstieg des relativen Risikos (RR) pro Anstieg der Belastung um $10 \ [\mu g/m^3]$.

Die grauen, eingerückten Schätzwerte beziehen sich auf die in der obenstehenden Metastudie betrachteten Studien. Wenn zwei Mediankonzentrationen angegeben sind, bezieht sich der obere Wert auf WHO (2021) und der untere, kursive Wert auf Chen & Hoek (2020).

Wirkun	g NO2: Do	osis-Wirkungs-Relati	onen Mortalitä	ät Erwachsene			
Schätz	er	Datengrundlage	Me- dian/Durch- schnitts- Belastung [µg/m³]	Quelle	Kurz- /Lang- zeit	Publika- tion	Bemerkung
1.055				Hoek et al. (2013)	Lang- zeit	HRPIE 2013	
1.0027		30 europäische Städte			Kurzzeit	HRPIE 2013	RR korrigiert für PM ₁₀
1.086		Region: Europäische Kohorten Studien (Schweden, Dänemark, Niederlanden, Frankreich, Deutschland, Österreich) Alter: Durchschnitt 42-73 N: 325'367	Durch- schnitt (SD): 25.00 (8.05)	Strak M, Weinmayr G, Rodopoulou S, Chen J, de Hoogh K et al. (2021)	Lang- zeit	ELAPSE	Konfidenzintervalle: (1.070, 1.102)
1.02				Huangfu & At- kinson (2020)		WHO 2021	Metaanalyse, 24 Studien, CDFs lassen einen supra- linearen Zusammenhang vermuten.
	Zugrund	eliegende Studien Hua	angfu & Atkinso				
	1.01	Region: England Alter: 25+ N: 154`204	18.5	Tonne & Wil- kinson (2013)	Lang- zeit		
	1.04	Region: Kanada Alter: 25-89 N:2`448`500	21.6	Weichenthal, Pinault & Bur- nett (2017)	Lang- zeit		
	1.03	Region: Kanada Alter: 25-89 N: 2`521`525	21.8	Crouse et al. (2015)	Lang- zeit		
	1.02	Region: USA Alter: 30+ N: 669'046	21.8	Turner et al. (2016)	Lang- zeit		
	1.12	Region: Japan Alter: 65-84 N: 13`412	22.0	Yorifuji et al. (2013)	Lang- zeit		
	1.02	Region: England Alter: 40-89 N: 830`429	22.5	Carey et al. (2013)	Lang- zeit		
	1.01	Region: Europa Alter: Alle N: 367`251	22.2	Beelen et al. (2014)	Lang- zeit		
	1.01	Region: USA Alter: 15.3-84.9 N: 53`814	26.1	Hart et al. (2013)	Lang- zeit		

	1.05	Region: USA Alter: 30-55 N: 84,562	26.7	Hart et al. (2013)	Lang- zeit		
	1.07	Region: Frankreich Alter: 35-50 N: 20`327	28.0	Bentayeb et al. (2015)	Lang- zeit		
	1.08	Region: USA Alter: 30+ N: 406`917	30.3	Krewski et al. (2003)	Lang- zeit		
	1.03	Region: Holland Alter: >=30 N: 7`218`363	31.0	Fischer et al. (2015)	Lang- zeit		
	1.00	Region: USA Alter: 64 (Durch- schnitt) N: 6575	35.9	Hartiala et al. (2016)	Lang- zeit		
	1.14	Region: Frankreich Alter: 25-59 N: 14`284	36.5	Filleul et al. (2005)	Lang- zeit		
	1.03	Region: USA Alter: 51 (Durch- schnitt) N: 28' 635	37.2	Lipfert et al. (2006)	Lang- zeit		
	1.03	Region: Holland Alter: 55-69 N: 120`227	38.0	Brunekreef et al. (2009)	Lang- zeit		
	1.23	Region: Kanada Alter: 56.6 (Durch- schnitt) N: 2'360	39.1	Jerrett et al. (2009)	Lang- zeit		
	0.92	Region: China Alter: 23-89 N: 39`054	40.7	Chen et al. (2016)	Lang- zeit		
	1.03	Region: Italien Alter: 30+ N: 1`265`058	43.6	Cesaroni et al. (2013)	Lang- zeit		
	0.94	Region: UK Alter: 68.8 (Durch- schnitt) N: 1800	44.6	Desikan et al. (2016)	Lang- zeit		
	0.95	Region: Italien Alter: 35-84 N: 6`513	48.5	Rosenlund et al. (2008)	Lang- zeit		
	0.98	Region: USA Alter: 30+ N: 12`336	63.1	Lipsett et al. (2011)	Lang- zeit		
	1.00	Region: USA Alter: 27-95 N: 5`652	69.2	Abbey et al. (1999)	Lang- zeit		
	1.00	Region: China Alter: 65+ N: 61`386	104.0	Yang et al. (2018)	Lang- zeit		
1.023 1.006 – (nur NO ₂					Lang- zeit	COMEAP	Metaanalyse, 11 Studien, einige Überschneidungen mit Studien, die für WHO

					2021 Schätzer verwendet wurden, Studien von 1999 -2015. Effektschät- zer in Studien reichen von 0.984 bis 1.078.
1.030			Lang- zeit		Metaanalyse, 6 Studien, viele Überschneidungen mit Studien, die für WHO 2021 Schätzer verwendet wurden, Studien von 2009-2016, Relevanz für Deutschland wurde in der Auswahl der Studien berücksichtigt. ACHTUNG: Schätzer für Kardiovaskuläre Mortalität.
Spitaleintritte we	gen Atemwegsserkra	inkungen			
1.0015			Kurzzeit	HRPIE 2013	Metaanalyse, 4 Studien
1.0180			Kurzzeit	HRPIE 2013	Metaanalyse, 15 Studien

Tabelle 24: Wirkung NO_2 . Effektschätzer: Anstieg des relativen Risikos (RR) pro Anstieg der Belastung um 10 [μ g/m³].

A-6.2 Attributable Fälle pro 1 µg/m³ zusätzliche Belastung

		Einheit	Attributable Fälle durch zusätzliche 1 µg/m³ PM10- Belastung pro 100'000 Einwohner und Jahr	Attributable Fälle durch zusätzliche 1 µg/m³ PM2.5- Belastung pro 100'000 Einwohner und Jahr
Best-guess	Mortalität Erwach- sene	Fälle	15	18
At-least	Mortalität Erwach- sene	Fälle	3	5
Best-guess und At- least	Säuglingssterblich- keit	Fälle	0	0
	Spitaleintritte wegen Atemwegserkrankun- gen	Spitaleintritte	1	2
	Spitaleintritte wegen Herz/Kreislauferkran- kungen	Spitaleintritte	1	1
	Inzidenz chronische Bronchitis bei Er- wachsenen	Fälle	28	37
	Prävalenz von Bron- chitis bei Kindern	Fälle	100	136
	Tage mit Asth- masymptomen bei Erwachsenen	Tage	100	140
	Tage mit Asth- masymptomen bei Kindern	Tage	216	301
	Tag mit einge- schränkter Aktivität bei Erwachsenen	Tage	12036	16`770

Tabelle 25: Attributable Fälle pro 1 µg/m³ zusätzliche Belastung für Feinstaub.

		Einheit	Attributable Fälle durch zusätzliche 1 $\mu g/m^3$ NO $_2$ -Belastung pro 100'000 Einwohner und Jahr
Best-guess	Mortalität Erwachsene	Fälle	6
At-least	Mortalität Erwachsene	Fälle	4
Best-guess und At-least	Spitaleintritte wegen Atemweg- serkrankungen	Spitalein- tritte	2

Tabelle 26: Attributable Fälle pro 1 $\mu g/m^3$ zusätzliche Belastung für NO_2 .

	Einheit	Immaterielle Kosten	Medizinische Behandlungs- kosten	Nettoprodukti- onsausfall	Total
Mortalität	Todesfall	2'394'509	-	122'013	2'516'521
Verlorene Lebenszeit	Todesfall	2'394'509	-	-	2'394'509
Verlorene Erwerbszeit	Todesfall	-	-	117'584	117'584
Wiederbesetzungskosten (Durchschnitt m/f)	Todesfall	-	-	4'429	4'429
Spitaleintritt wegen Herzkreis- lauferkrankungen	Fall	7'316	13'219	7'080	27'615
Spitaleintritt wegen Atemwegser- krankungen	Fall	5'783	7'055	3'616	16'453
Chronische Bronchitis bei Erwachsenen ((18 J.)	Fall	114'154	7'024	1'536	122'713
Akute Bronchitis bei Kindern (5-17 Jahre)	Fall	310	56	19	386
Tag mit Asthmasymptome bei Erwachsenen (18 Jahre)	Tag	74	1	110	184
Tag mit Asthmasymptome bei Kindern (5-17 Jahre)	Tag	74	1	19	94
Tag mit eingeschränkter Aktivität (18 Jahre)	Tag	223	-	272	495

Tabelle 27: Kostensätze Erhebungsjahr 2015. Quellen: ARE 2021 ergänzt mit eigenen Berechnungen.

	Bezug	Immaterielle Kosten	Medizinische Behandlungs- kosten	Nettoprodukti- onsausfall	Total
Mortalität	Todesfall	2'485'218.68	-	124'429.25	2'609'648
Verlorene Lebenszeit	Todesfall	2'485'218.68	-	-	2'485'219
Verlorene Erwerbszeit	Todesfall	-	-	119'969.23	119'969
Wiederbesetzungskosten (Durchschnitt m/f)	Todesfall	-	-	4'460.02	4'460
Spitaleintritt wegen Herzkreislaufer- krankungen	Fall	7'400.49	12'581	7'243.96	27'225
Spitaleintritt wegen Atemwegser- krankungen	Fall	5'849.58	6'714	3'699.73	16'263
Chronische Bronchitis bei Erwachsenen (ab 18 J.)	Fall	115'476.09	6'926	1'571.34	123'974
Akute Bronchitis bei Kindern (5-17 Jahre)	Fall	313.99	55	18.85	388
Tag mit Asthmasymptome bei Erwachsenen (ab 18 Jahre)	Tag	74.81	1	112.13	188
Tag mit Asthmasymptome bei Kindern (5-17 Jahre)	Tag	74.81	1	18.85	94
Tag mit eingeschränkter Aktivität (18 Jahre)	Tag	225.58		278.01	504

Tabelle 28: Kostensätze Erhebungsjahr 2020. ARE 2021 ergänzt mit eigenen Berechnungen.

A-6.4 Verlorene Lebenszeit

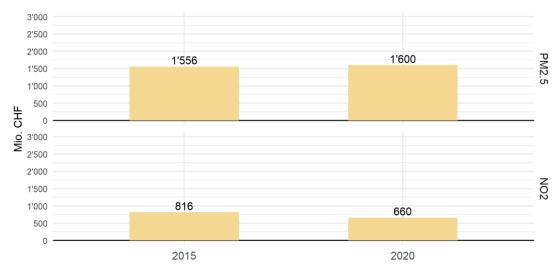

Inputs für die Berechnung der Mortalitätskosten	
Bei Todesfall durchschnittliche Anzahl verlorene Lebensjahre (Gewichteter Durchschnitt Gesamtbevölkerung)	9.96
Bei Todesfall durchschnittliche Anzahl verlorene Erwerbsjahre	1.18
Erwerbsquote der Verstorbenen (relevant für Wiederbesetzungskosten)	12%

Tabelle 29: Inputs für die Berechnung der Mortalitätskosten. Quelle: ARE 2021.

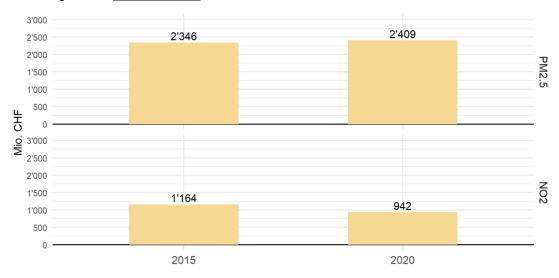

A-7 Sensitivitätsanalyse

Abbildung 19 zeigt die Schätzungen der luftschadstoffbedingten Gesundheitskosten für die Best-guess-Variante mit den unteren und oberen Grenzen der 95%-Konfidenzintervalle der Effektschätzer. Die Bandbreiten, z.B. 1'600 bis 2'409 CHF für die PM2.5-bedingten Gesundheitskosten im Jahr 2020, veranschaulichen die statistische Unsicherheit der jeweils geschätzten Kosten. Die statistische Unsicherheit der Best-guess-Schätzung beträgt +/-21% für PM2.5 sowie +/- 18% für NO₂. Nebst der statistischen Unsicherheit bestehen in geringem Masse Unsicherheiten bei der Immissionsmodellierung und den Annahmen, die sich jedoch nicht exakt beziffern lassen. Insgesamt gehen wir daher von einem Unsicherheitsbereich von rund 25% aus.

Schätzung mit den unteren Grenzen der 95%-Konfidenzintervalle der Effektschätzer

Schätzung mit den oberen Grenzen der 95%-Konfidenzintervalle der Effektschätzer

econcept

Für die At-least-Schätzungen der luftschadstoffbedingten Gesundheitskosten haben wir Effektschätzer verwendet, die nach heutigem Kenntnisstand mit hoher Wahrscheinlichkeit zu einer Unterschätzung der Kosten führen. Wir interpretieren die Ergebnisse der At-least-Variante somit als Mindestwerte und weisen daher für diese Mindestwerte keine Unsicherheitsbereiche aus.

A-8 Literaturverzeichnis

- ARE (2019): Externe Effekte des Verkehrs 2015. Aktualisierung der Berechnungen von Um-welt-, Unfall- und Gesundheitseffekten des Strassen-, Schienen-, Luft- und Schiffsverkehrs 2010 bis 2015. Schlussbericht (überarbeitete Version).
- ARE (2021): Externe Kosten und Nutzen des Verkehrs in der Schweiz Strassen-, Schienen-, Luft- und Schiffsverkehr 2018 Grundlagen für die Berechnungen.

 (Die Grundlagen wurden auf Anfrage durch das ARE zur Verfügung gestellt.)
- ARE (2014): Externe Effekte des Verkehrs 2010. Monetarisierung von Umwelt-, Unfall- und Gesundheitseffekten. Bern, Zürich, Altdorf, ecoplan/Infras im Auftrag des ARE.
- ARE (2008): Externe Kosten des Verkehrs in der Schweiz, Aktualisierung für das Jahr 2005 mit Bandbreiten. Bern, Zürich, Altdorf, ecoplan/Infras im Auftrag des ARE.
- ARE/BAFU (2004): Externe Gesundheitskostendurch verkehrsbedingte Luftverschmutzung in der Schweiz. Bern, Zürich, Altdorf, ecoplan/Infras im Auftrag des ARE.
- econcept (2018): Die Kosten der Luftverschmutzung 2005 bis 2015 für den Kanton Zürich, die Stadt Zürich und die Stadt Winterthur.
- ecoplan (2016): Empfehlungen zur Festlegung der Zahlungsbereitschaft für die Verminderung des Unfall- und Gesundheitsrisikos (value of statistical life). Auftraggeber: Bundesamt für Raumentwicklung ARE und Beratungsstelle für Unfallver-hütung bfu.
- ELAPSE (2021): Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis.
- HRAPIE (2013): Health risks of air pollution in Europe HRAPIE project. Recommendations for concentration–response functions for cost–benefit analysis of particu-late matter, ozone and nitrogen dioxide. World health organization WHO, 2013.
- Infras/Meteotest (2020): Immissionen Schweiz und Lichtenstein. Modellresultate NO2, PM10, PM2.5 für 2015, 2020, 2030. Im Auftrag des Bundesamtes für Umwelt (BAFU).
- Meteotest/Infras (2017): Luftschadstoff-Emissionen Kanton Aargau, Technischer Bericht zur Emissionsbilanz und zum Emissionskataster.

- OECD (2012): Mortality Risk Valuation in Environment, Health and Transport Policies. Online: http://www.oecd.org/environment/mortalityriskvaluationinenvironmenthealthandtransportpolicies.htm (10.8.2015).
- UBA (2018): Quantifizierung von umweltbedingten Krankheitslasten aufgrund der Stickstoff-dioxid- Exposition in Deutschland.
- WHO (2021): WHO global air quality guidelines. Par-ticulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide.