

48. Aargauische Klärwärtertagung

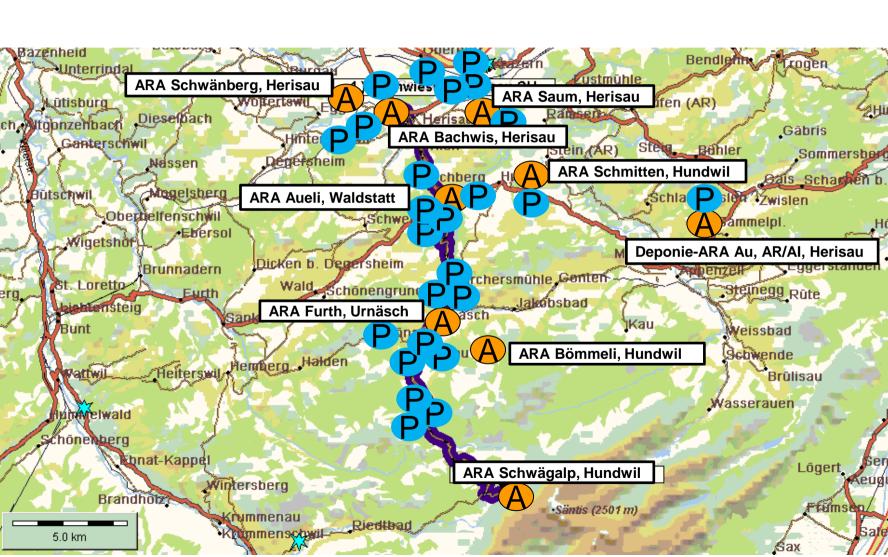
Hansruedi Messmer, Betriebsleiter Betriebsorganisation Appenzeller Hinterland

Gliederung

- Betriebsorganisation Appenzeller Hinterland
 - Die Betriebsorganisation ist Zuständig für
 - Vorteile der Betriebsorganisation Appenzeller Hinterland
 - Nachteile der Betriebsorganisation Appenzeller Hinterland

Pulveraktivkohle (PAK) aus der Praxis

- Vorgeschichte, Entscheidungsgrundlagen
- Realisierung neue PAK-Stufe
- Inbetriebnahme
- Reinigungsleistung
- Betriebserfahrung
- ARA in Betrieb / im Bau / in Planung CH


Betriebsorganisation Appenzeller Hinterland

Die Betriebsorganisation ist Zuständig für

- 14 Kläranlagen
- 26 Pumpstationen
- 86 km Kanal
- 16 Hochwasserentlastungen
- 2 Regenwasserklärbecken
- 1 Wetterstation

Betriebsorganisation Appenzeller Hinterland

Betriebsorganisation Appenzeller Hinterland

Vorteile der Betriebsorganisation Appenzeller Hinterland

- Bewältigung spezieller Notfallsituationen
- Pikettorganisation
- Gemeinsamer Einkauf
- Personelle Fachkenntnisse
- Reparaturen und Erneuerungen selbst durchführen
- Zusammenlegen gleichartiger Arbeiten
- Lagerhaltung

Überschwemmung Urnäsch

Bewältigung Notfallsituation

Überschwemmung Urnäsch

Bewältigung Notfallsituation Sofortige Beckenleerung

Betriebsorganisation Appenzeller Hinterland

Vorteile der Betriebsorganisation Appenzeller Hinterland

- Bewältigung spezieller Notfallsituationen
- Pikettorganisation
- Gemeinsamer Einkauf
- Personelle Fachkenntnisse
- Reparaturen und Erneuerungen selbst durchführen
- Zusammenlegen gleichartiger Arbeiten
- Lagerhaltung

Störfall: Nur zu bewältigen mit genug und kompetentem Personal

Störfall: Nur zu bewältigen mit genug und kompetentem Personal.

Störfall: Nur zu bewältigen mit genug und kompetentem Personal

Betriebsorganisation Appenzeller Hinterland

Vorteile der Betriebsorganisation Appenzeller Hinterland

- Bewältigung spezieller Notfallsituationen
- Pikettorganisation
- Gemeinsamer Einkauf
- Personelle Fachkenntnisse
- Reparaturen und Erneuerungen selbst durchführen
- Zusammenlegen gleichartiger Arbeiten
- Lagerhaltung

Labor Küvetten

wenig Rabatt

Betriebsorganisation Appenzeller Hinterland

Vorteile der Betriebsorganisation Appenzeller Hinterland

- Bewältigung spezieller Notfallsituationen
- Pikettorganisation
- Gemeinsamer Einkauf
- Personelle Fachkenntnisse
- Reparaturen und Erneuerungen selbst durchführen
- Zusammenlegen gleichartiger Arbeiten
- Lagerhaltung

- Pumpenlager
 - Notfallsituationen
 - Beckenleerung
- Immer genügendPumpen vorhanden
- Instandhaltung durch Fachpersonal

- Utopur Vorrat
 - Fadenbakterienbefall
 - Schaum auf ARA
- Entschäumer & Javelwasser
 - Schaum auf ARA

Fadenbakterienbefall: **Sofort** Einsatz von Entschäumer und Utopur nötig (IMMER VORRAT VORHANDEN)

Betriebsorganisation Appenzeller Hinterland

Nachteile der Betriebsorganisation Appenzeller Hinterland

- Erhöhte personelle Anforderungen (Fachkenntnisse, Flexibilität, Teamfähigkeit…)
- Administrativer Abrechnungsaufwand
- Bei Bedienungsfehler: Infolge mehrerer Personen teilweise nicht mehr zuzuordnen
- Nachteil Anfahrtsweg zu verschiedenen ARA /PW

Betriebsorganisation Appenzeller Hinterland

Nachteile der Betriebsorganisation Appenzeller Hinterland

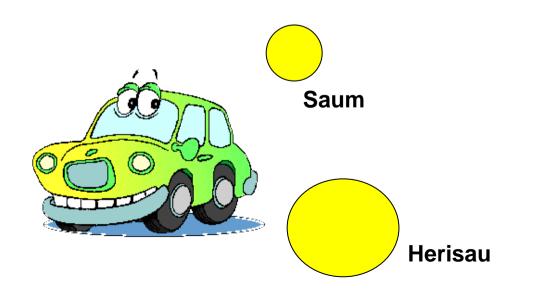
- Erhöhte personelle Anforderungen (Fachkenntnisse, Flexibilität, Teamfähigkeit...)
- Administrativer Abrechnungsaufwand
- Bei Bedienungsfehler: Infolge mehrerer Personen teilweise nicht mehr zuzuordnen
- Nachteil Anfahrtsweg zu verschiedenen ARA /PW

Nachteil administrativer Aufwand

Betriebsorganisation Appenzeller Hinterland

Nachteile der Betriebsorganisation Appenzeller Hinterland

- Erhöhte personelle Anforderungen (Fachkenntnisse, Flexibilität, Teamfähigkeit...)
- Administrativer Abrechnungsaufwand
- Bei Bedienungsfehler: Infolge mehrerer Personen teilweise nicht mehr zuzuordnen
- Anfahrtsweg zu verschiedenen ARA /PW



Nachteil Anfahrtsweg zu verschiedenen ARA /PW

Betriebsorganisation Appenzeller Hinterland

Vorgeschichte, Entscheidungsgrundlagen

Vorfluter Glatt

- Länge: 25 km
- Einzugsgebiet: ca. 70 km²
- Abfluss Herisau Q₃₄₇: 0.14 m³/s
- Bevölkerung: ca. 45'000 Personen
- Bevölkerungsdichte: ca. 640 Pers./km²
- Verdünnungsverhältnis ARA Herisau/Glatt: statt 1:10 bis zu 1:1

Vorgeschichte, Entscheidungsgrundlagen

Zustand Farbigkeit

Seite 28

Vorgeschichte, Entscheidungsgrundlagen

Zustand Schaum

Vorgeschichte, Entscheidungsgrundlagen

Ozonierung oder Aktivkohle?

	Ozonierung	Aktivkohle
Entfärbung	+	+
PVA/Tenside	+	+
Mikroverunreinigungen	+	+
Technische Machbarkeit	+	+
Kosten (Sandfilter vorhanden)	+	+
DOC-Reduktion	-	+
Energiebedarf (vor Ort bzw. bei Herstellu	ng) -	-
Bildung Folgeprodukte	-	+
Handhabung/Arbeitssicherheit	-	+
Qualität Einsatzmittel (Ozon/Kohle)	+	-

Seite 30

Vorgeschichte, Entscheidungsgrundlagen

Einleitbedingungen ARA Herisau

	bisher	neu
GUS BSB5 DOC (Richtwert) NH4-N, über 10°C	5 mg/l 5 mg/l, 90% RE (4-6 mg/l, 85% RE) 1 mg/l, 90% RE	unverändert unverändert 6 mg/l, 90% RE unverändert
Ptot. Farbigkeit	0.8 mg/l, 80% RE keine	0.3 mg/l, 90% RE DFZ ₄₃₆ gelb: 0.50 m ⁻¹ DFZ ₅₂₅ rot: 0.20 m ⁻¹ DFZ ₆₂₀ blau: 0.10 m ⁻¹
Mikroverunreinigungen Schaum, Trübung, Geruch	keine ohne	80%, Richtwert unverändert

Realisierung

2010/2011: Bauprojekt (Erweitertes Vorprojekt)

2011: Zusicherung Kantonsbeitrag 40% (Gewässerschutzfonds AR)

2011/2012: Kantonale Verfügungen Einleitbedingungen

2012: Vereinbarung Kostenteiler Gemeinde/Textilbetrieb

2012: Kreditgenehmigung Einwohnerrat Herisau (einstimmig)

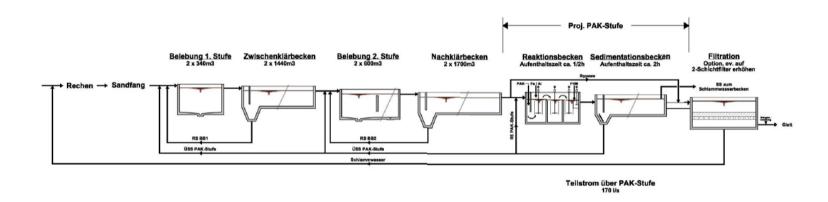
2013: Baubewilligung, Submissionen, Baubeginn im August

2013-2015: Bauarbeiten

Juni 2015: Inbetriebsetzung

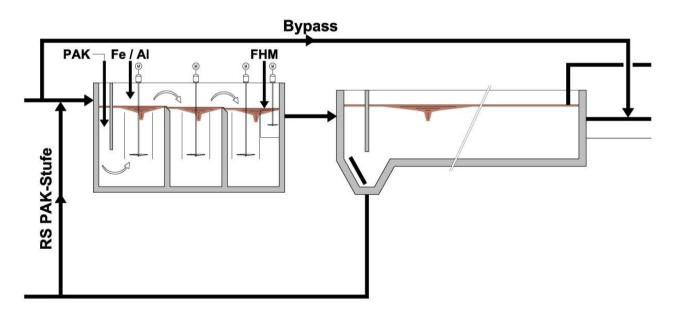
ab Juli 2015: Betriebsoptimierung

Realisierung


Realisierung

ARA Herisau, Hauptdaten

- Baujahr 1973
- 34'000 EWG
- Qmax. 310 l/s
- 2-strassig
- Grob- und Feinrechenanlagen
- Öl-/Sandfanganlage
- Hoch- und Schwachlastbiologie mit Zwischen-/Nachklärbecken
- Sand-Filteranlage
- P-Fällung 2-stufig
- Frischschlammentwässerung
- AV Altenrhein: Schlammausfaulung, Trocknung, Verbrennung


Realisierung

Verfahrensschema der gesamten Kläranlage

Realisierung

Reaktionsbecken Sedimentationsbecken Aufenthaltszeit ca. 1/2h Aufenthaltszeit ca. 2h

Realisierung

Baugrube am 3. April 2014

Realisierung

Rohbauten Herbst 2014

Realisierung

Installationsarbeiten Untergeschoss am 2. Februar 2015

Pulveraktivkohle (PAK) aus der Praxis Realisierung

PAK-Zudosier-Anlage im Untergeschoss Frühjahr 2015

Pulveraktivkohle (PAK) aus der Praxis Realisierung

Neue PAK-Stufe am 21. August 2015

Pulveraktivkohle (PAK) aus der Praxis Realisierung

Gesamtansicht am 21. August 2015

Realisierung

Baukosten

Erstellungskosten exkl. MwSt., ca. Fr. 4'716'000

Kantonsbeitrag, ca. 40 % Fr. 1'940'000

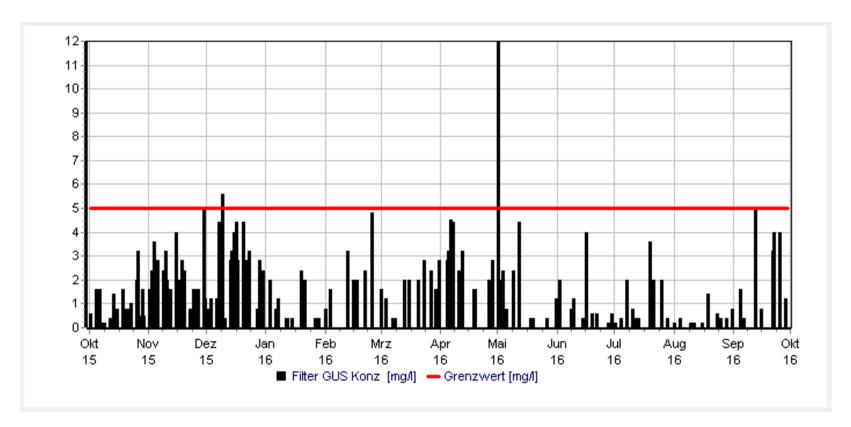
Ortsansässiger Textilbetrieb, ca. 1/3 v. Rest Fr. 951'000

Gemeinde Herisau, ca. 2/3 v. Rest Fr. 1'825'000

Bundesbeitrag, bis 75 % ($40 \rightarrow 75$ %) in Aussicht

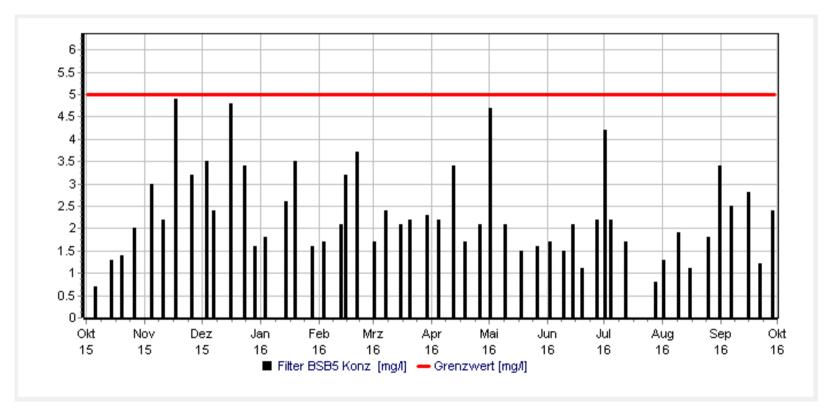
Inbetriebnahme

- Zu Beginn Konstant-Dosierung PAK 144 kg/d bzw. ca. 15 mg/l
- Konstant-Dosierung bis Ziel-TS = 3.5 g/l (ca. 4 Wochen)
- Zudosierung FM und FHM zuflussproportional 2.0 bzw. 0.3 mg/l Wirksubstanz
- Parallelbetrieb aller 8 Filterzellen mit 24 h Zwangsspülung

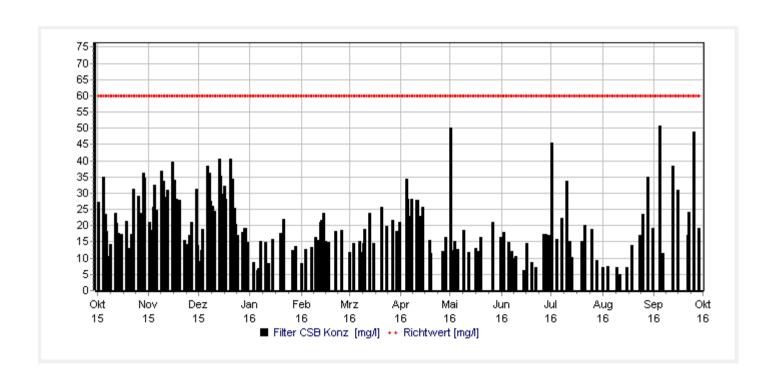

Inbetriebnahme

PAK-Zudosierung (mengenproportional)

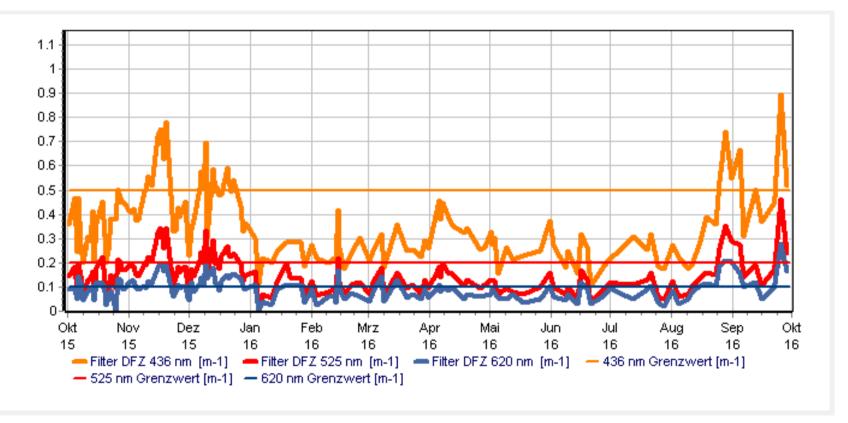
- Juni 2015: 15 mg/l (TS-Aufbau)
- Juli-Sept 2015: 10 mg/l
- Okt-Dez 2015: 15 mg/l
- Jan-Mai 2016: 20 mg/l
- Juni-Juli 2016: 30 mg/l
- ab August 2016: 20 mg/l
- Ziel: frachtproportional (abhängig DOC mit PAK-Dosierfenster z.B. 10 – 25 mg/l)


Reinigungsleistung bisher und neu

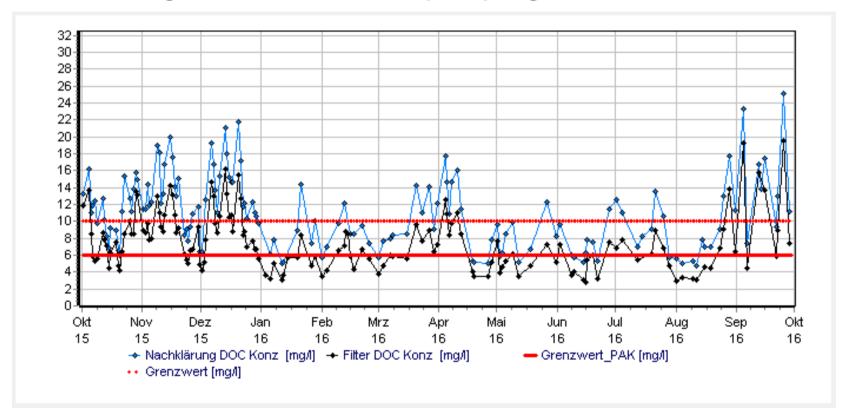
Gesamte ungelöste Stoffe (GUS), mg/l


Reinigungsleistung bisher und neu

Biochemischer Sauerstoffbedarf in 5 Tagen (BSB₅), mg/l


Reinigungsleistung bisher und neu

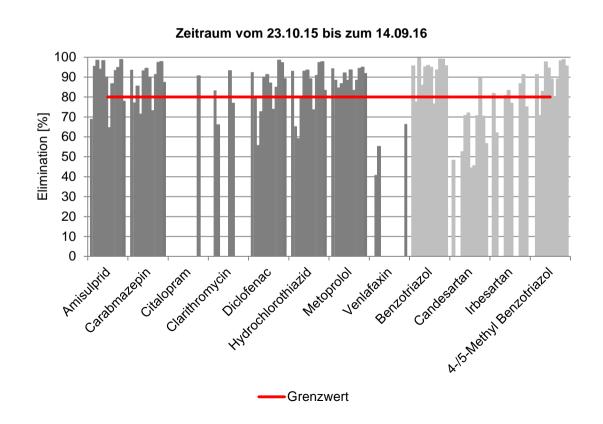
Chemischer Sauerstoffbedarf (CSB), mg/l


Reinigungsleistung bisher und neu

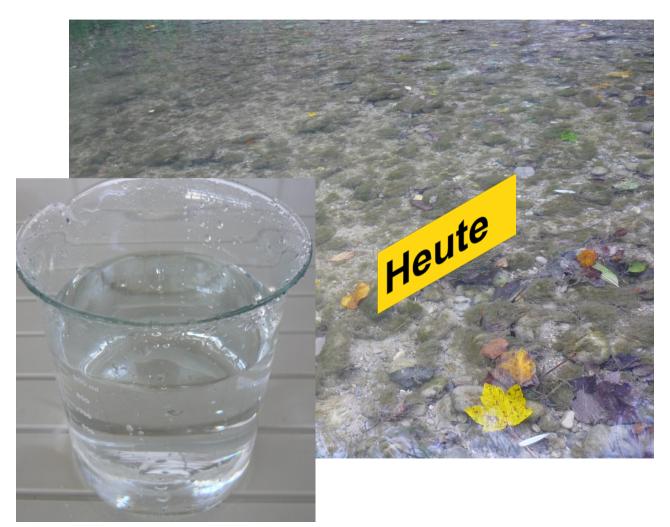
Durchsichtigkeitsfarbzahlen (DFZ), je Wellenlänge, m⁻¹

Reinigungsleistung bisher und neu

Gelöster organischer Kohlenstoff (DOC), mg/l


Reinigungsleistung bisher und neu

Organische Spurenstoffe (MV-Indikatorstoffe)


	Stoffnahme	Stoffgruppe
Sehr gut eliminierbare Stoffe	Amisulprid	Arzneimittelwirkstoff
	Carbamazepin	Arzneimittelwirkstoff
	Citalopram	Arzneimittelwirkstoff
	Clarithromycin	Arzneimittelwirkstoff
	Diclofenac	Arzneimittelwirkstoff
	Hydrochlorothiazid	Arzneimittelwirkstoff
	Metoprolol	Arzneimittelwirkstoff
	Venlafaxin	Arzneimittelwirkstoff
Gut eliminierbare Stoffe	Candesartan	Arzneimittelwirkstoff
	Benzotriazol	Korrosionsschutz
	Irbesartan	Arzneimittelwirkstoff
	Methyl-Benzotriazol	Korrosionsschutz

Reinigungsleistung bisher und neu

Elimination organische Spurenstoffe

Betriebserfahrungen

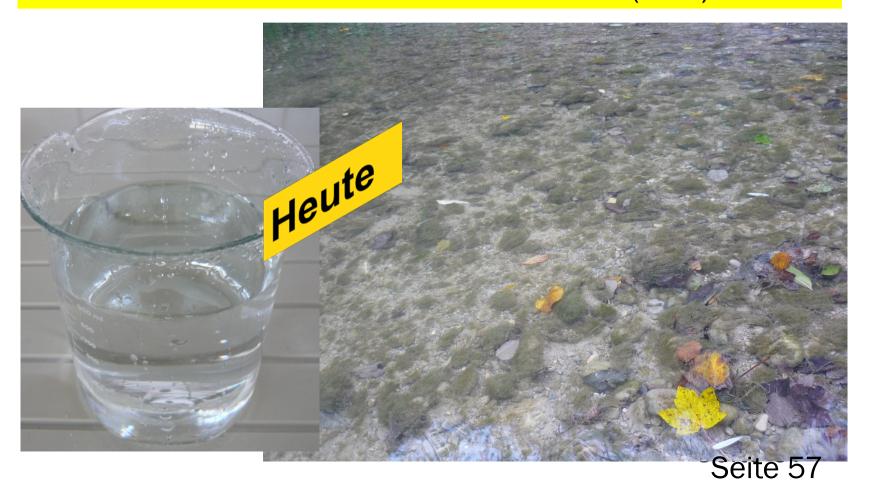
Betriebserfahrungen

Elimination Schaum mittels Pulveraktivkohle (PAK)

Betriebserfahrungen

Elimination Schaum mittels Pulveraktivkohle (PAK)

te 55


Betriebserfahrungen

Elimination Farbe mittels Pulveraktivkohle (PAK)

Betriebserfahrungen

Elimination Farbe mittels Pulveraktivkohle (PAK)

Betriebserfahrungen

Erfahrungen zur Inbetriebnahme PAK Verstopfung der Ansetzvorrichtung

Intensiver Unterhalt wirkt gegen eine Verstopfung in der Ansetzvorrichtung Diese wird mind. 2x monatlich durchgeführt, Tendenz mehr.

- Luftfilter entfernen und mit Druckluft und Staubsauger reinigen
- Niveausonde Dispenser lösen und reinigen
- Dispenser öffnen und reinigen

Wir sind offen für andere Möglichkeiten welche dieses Ergebnis auch ohne den intensiven Unterhalt erreichen.

Betriebserfahrungen

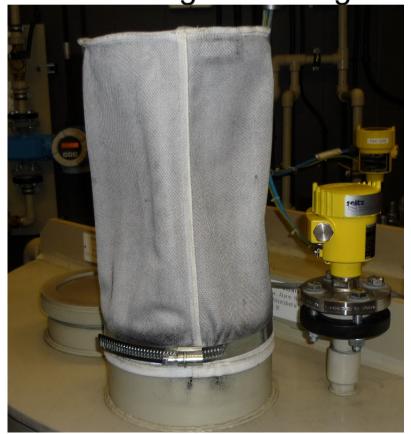
Erfahrungen zur Inbetriebnahme PAK Verstopfung der Ansetzvorrichtung

Intensiver Unterhalt wirkt gegen Verstopfung

Erfahrungen zur Inbetriebnahme PAK Verstopfung der Ansetzvorrichtung

Lösungsvorschlag

- Der Kohleeintrag in den Mischbehälter soll neu mit einer Wasserstrahlpumpe erfolgen.
- Durch diese Pumpe entsteht ein geringes Vakuum und es wird insgesamt ein verbesserter Kohletransport in den Suspensionsbehälter ermöglicht..
- Es ist geplant, dass zukünftig rund 90% des Wassers via Wasserstrahlpumpe und nur noch 10% des Wassers via Benetzung im Einspültrichter eingetragen werden soll.
- Im Weiteren wird in der Vorkammer des grossen Suspensionsbehälters ein Verdrängerluft-Filter eingebaut.
- Damit kann sichergestellt werden, dass die eingetragene Luft entweichen kann und nicht zu einem Überdruck führt, was sich wiederum (wie heute der Fall) negativ auf die Kohle-Zudosierung auswirkt.


Erfahrungen zur Inbetriebnahme PAK
Verstopfung der Ansetzvorrichtung

Lösungsvorschlag

Erfahrungen zur Inbetriebnahme PAK Verstopfung der Ansetzvorrichtung

Lösungsvorschlag

Betriebserfahrungen

Nach knapp einem Jahr sind bei beiden Dosierleitungen Verstopfungen aufgetreten

Nach knapp einem Jahr sind bei beiden Dosierleitungen Verstopfungen aufgetreten.

Eine Dosierung war nicht mehr möglich.

Der ARA-Betrieb hat die eine Dosierleitung (Schlauch ausgewechselt).

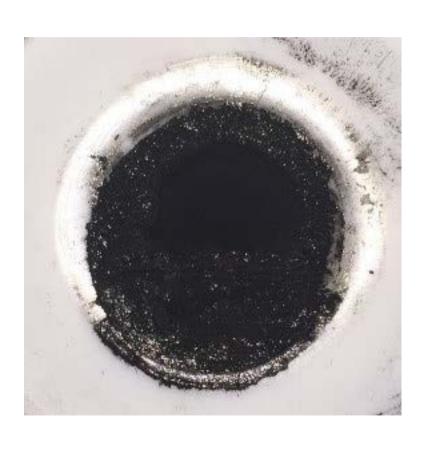
Die zweite Leitung konnte gespült werden und ist nun wieder in Betrieb.

Seite 63

Nach knapp einem Jahr sind bei beiden Dosierleitungen Verstopfungen aufgetreten

Seite 64

Ablagerungen und MID



MID haben grosse

Ablagerungen von Kohle
im Messrohr?

und auch in den Kunststoffleitungen welche sich sicher auch in falschen Messangaben ausdrucken werden

Ablagerungen und MID

Lösung:

monatliche Kontrolle der Mengenmessung Zugabe PAK RBS / RBN

Je nach Resultat: Reinigung der gesamten Dosieranlage und Umbau zu Bypass der Spülleitung über den Dosierpumpen.

Oder: Umbau Wasserstrahlpumpen statt Quetschpumpen.

PAK Pumpenanordnung

Einbau Falsch

- Der Hersteller empfiehlt die waagrechte Montage der Pumpen
- Weil die Pumpen vertikal aufgestellt sind, ist der Quetschschlauch nicht optimal geschmiert
- Der Rotor f\u00f6rdert die Materie mit der Quetschung des Schlauchs
- Bei dieser Quetschung entsteht Reibung deshalb ist die optimale Schmierung des Schlauchs sehr wichtig
- Bei waagrechter Montage hat der Rotor zusätzlich eine Schöpfwirkung

Schmierung Quetschschläuche

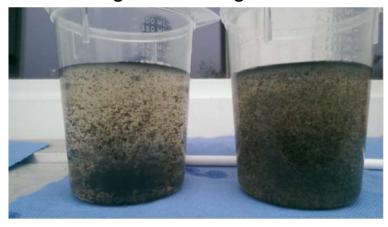
- Der Hersteller empfiehlt die waagrechte Montage der Pumpen
- Weil die Pumpen vertikal aufgestellt sind, ist der Quetschschlauch nicht optimal geschmiert
- Der Rotor f\u00f6rdert die Materie mit der Quetschung des Schlauchs
- Bei dieser Quetschung entsteht Reibung deshalb ist die optimale Schmierung des
- Schlauchs sehr wichtig
- Bei waagrechter Montage hat der Rotor zusätzlich eine Schöpfwirkung

Kontrolle der Quetschschläuche

Durch die Reibung des Rotors drückt es das Schmiermittel durch den Gummi des Schlauchs, in der Wand des Schlauchs hat es eine kleine Leitung die drückt das Schmiermittel in das Litermass

Ist das Litermass mit Kohle gefüllt ist der Schlauch undicht und muss ausgetauscht werden

PAK Pumpenanordnung


Material: Rost

Flockungs- und Fällmittel

Das Flockungs- und Fällmittel wird momentan an der gleichen Stelle beigemischt. Optimal (auch nach Angaben des Flockungsmittel-Herstellers) wäre aber zuerst dass Fällmittel und erst Ende Becken das Flockungsmittel beizumischen.

Es werden zu einem späteren Zeitpunkt auch noch verschiedene Flockungsmittel ausgetestet.

Bei einem Versuch im Labor ist dies auch ersichtlich.

Becher Links: Dosierung Fällmittel zuerst und FHM danach

Nach ca. 1 Minute ist die bessere Flockung im Becher links deutlich sichtbar.

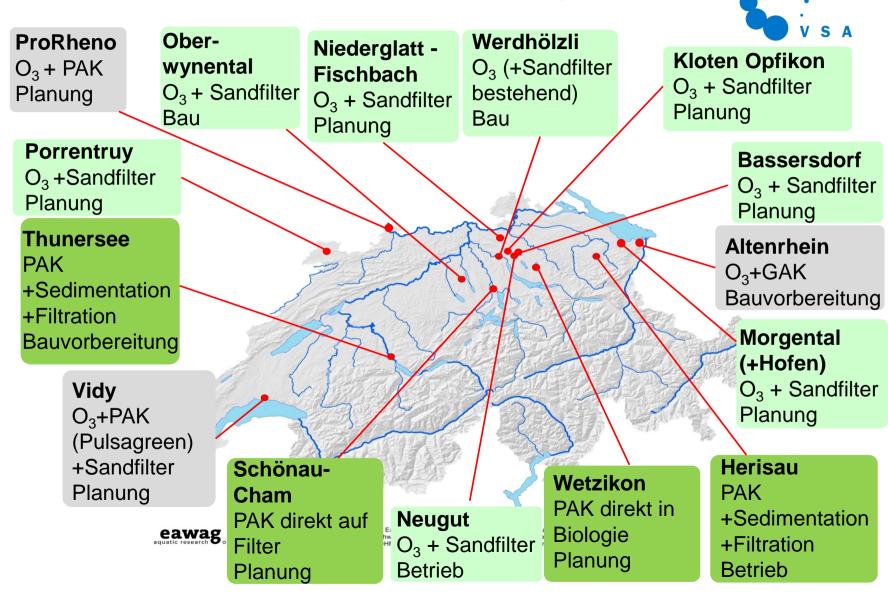
Flockungs- und Fällmittel

Rührwerk bei Zugabe Flockungsmittel

Wir waren in der glückliche Lage um beides in der Praxis zu beobachten. In einer Strasse wurde das Rührwerk defekt geliefert und seither ist diese Seite ohne Rührwerk in Betrieb, zum Vergleich mit der anderen Seite mit einem Rührwerk.

Der Unterschied ist deutlich sichtbar im Schlammpegel. d.h. die Sedimentation ist deutlich schlechter ohne Rührwerk und daher Schlammpegel tiefer als mit Rührwerk.

Strasse Süd Ausser Betrieb PAK Leitungen irreparabel verstopft



Lösung

- Spülung der Leitungen Saugseitig Dosierpumpen in
- Richtung Ansetzbehälter.
- Spülung der Leitungen Druckseitig Dosierpumpen In Richtung Reaktionsbecken.
- Alle Leitungen austauschen

Seite 74

ARA in Betrieb / im Bau / in Planung CH

