Verband Schweizer
Abwasser- und
Gewässerschutz-

Association suisse des professionnels de la protection des eaux

Associazione svizzera dei professionisti della protezione

Swiss Water Pollution Control Association

Elimination von Mikroverunreinigungen aus dem kommunalen Abwasser: AKTUELLER STAND DER ERFAHRUNGEN UND DES WISSENS

Dr. Pascal Wunderlin VSA Plattform «Verfahrenstechnik Mikroverunreinigungen»

Klärwärtertagung Kanton Aargau, 10. November 2016

Welche Verfahren sind für die Elimination der Mikroverunreinigungen geeignet? Welche Dokumente sind

Wer hilft, wenn ich fragen habe?

zu beachten?

Was sind Mikroverunreinigungen? Wie muss ich vorgehen?

Verfahrenswahl: Was ist zu beachten?

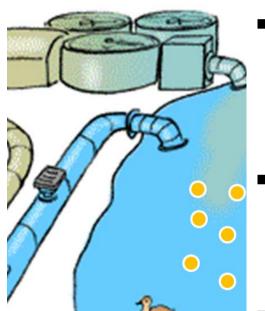
Wie wird der Betrieb bzw. die Reinigungsleistung

Warum müssen Mikroverunreinigungen aus dem Abwasser eliminiert werden?

Welche Kläranlage muss Massnahmen treffen?

Was sind Mikroverunreinigungen?

Tiefe Konzentrationen


Aufwändige Analytik

- Arzneimittel
- Nahrungszusätze (z.B. Süssstoffe)
- Kosmetika
- Flammschutzmittel
- Pestizide
- **...**

- Tausende verschiedene Stoffe in Gebrauch (ca. 30'000 Stoffe in der Schweiz)
- Verwendung auf Grund erwünschter biologischer Wirkung
- JEDOCH spezifische Wirkungen/ Nebenwirkungen in der Umwelt

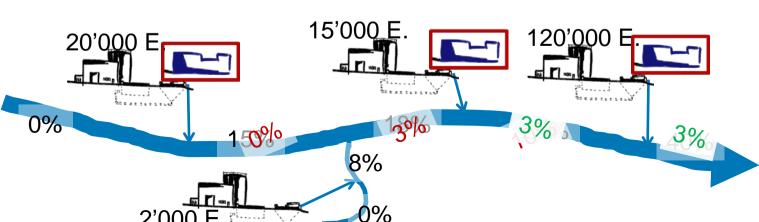
Warum müssen Mikroverunreinigungen aus dem Abwasser eliminiert werden?

- Viele davon gelangen über das Abwasser in die Kläranlagen
- Obwohl >90% des Abwassers in Kläranlagen gereinigt wird, sind deren Abläufe die bedeutendste Punktquelle für Spurenstoffeinträge ins Gewässer
- Negative Auswirkungen auf Organismen/Ökosysteme (z.B. spezifische Effekte durch hormonaktive Substanzen → Verweiblichung)
- In Trinkwasserressourcen (Fliessgewässer → Grundwasser)

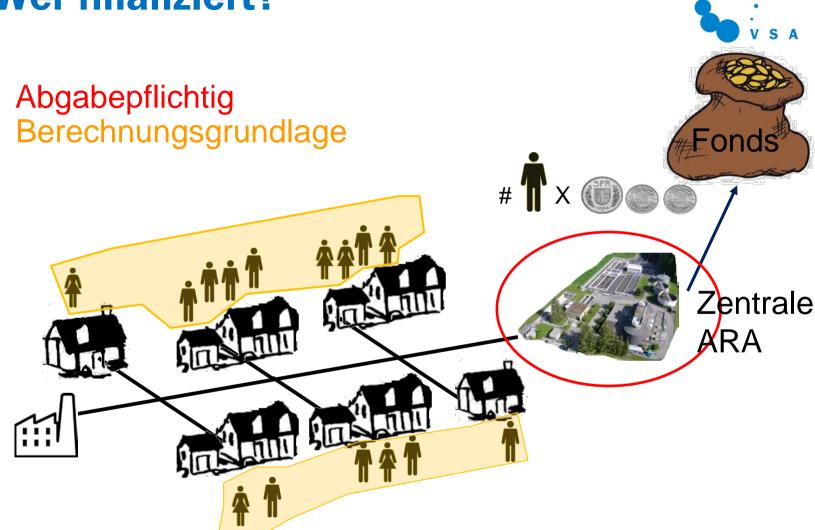
Welche Kläranlage muss Massnahmen treffen?

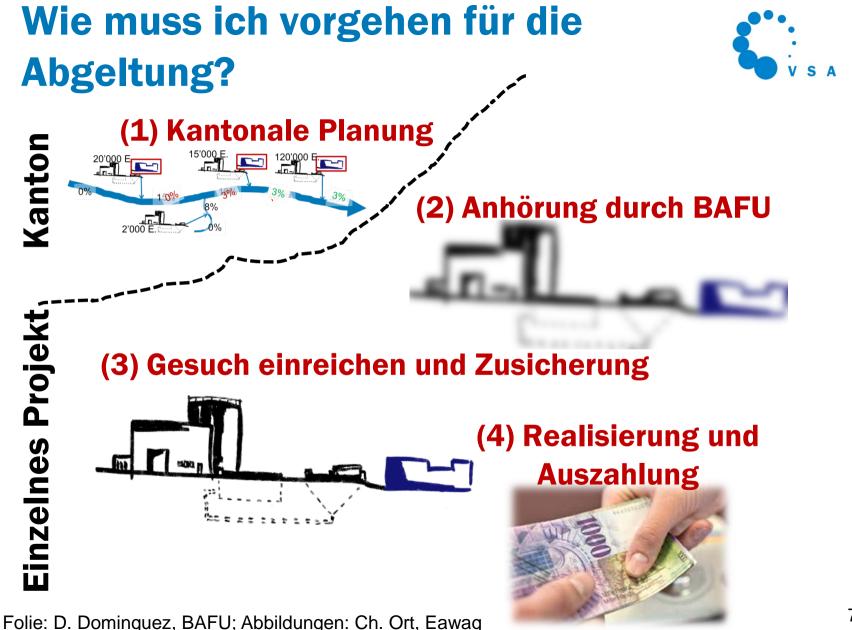
Abbildungen: Ch. Ort, Eawag

Schutz der Wasserressourcen


■ ARA > 24'000 E. in See-Einzugsgebieten

Schutz der aquatischen Ökosysteme


- ARA > 8'000 E. in Fliessgewässerabschnitten mit einem hohen Abwasseranteil (> 10%)
- Bei besonderen hydrogeologischen Verhältnissen


Oberliegerverantwortung / Frachtreduktion

■ ARA > 80'000 E.

Wer finanziert?

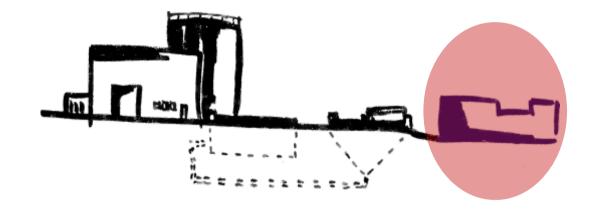


Abbildung: Ch. Ort, Eawag

Welche Verfahren sind für die Elimination von Mikroverunreinigungen geeignet?

Welche Verfahren sind für die Elimination von Mikroverunreinigungen geeignet?

- Ozon
- Ferrat
- (AOP)

Adsorption

- PAK Ulm
- GAK

Biologisch

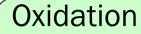
Physikalisch

- Nanofiltration
- Umkehrosmose

Oxidation

Ozon

Adsorption


- PAK Ulm
- PAK auf Filter
- PAK in Biologie
- GAK
- µGAK
- Extrafeine PAK

Kombi Oxidation und

Adsorption

Welche Verfahren sind für die Elimination von Mikroverunreinigungen geeignet?

- Ozon
- Ferrat
- (AOP)

Adsorption

- PAK Ulm
- GAK

Biologisch

Physikalisch

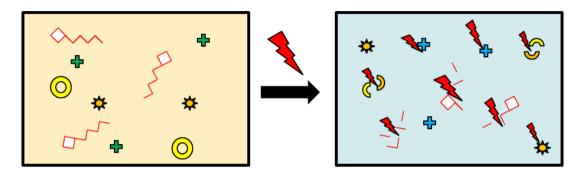
- Nanofiltration
- Umkehrosmose

Oxidation

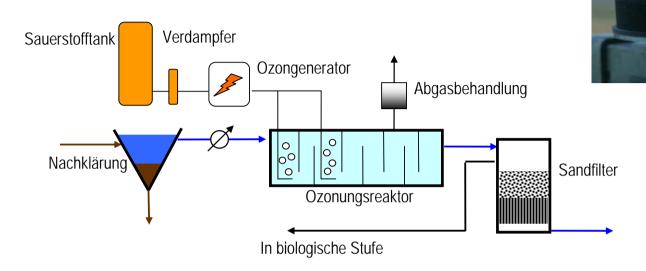
Ozon

Adsorption

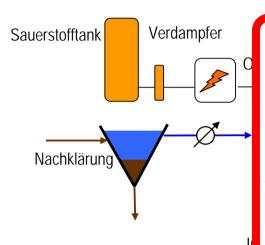
- PAK Ulm
- PAK auf Filter
- PAK in Biologie
- GAK
- μGAK
- Extrafeine PAK


Kombi Oxidation und

Adsorption


Funktionsweise Ozonung

- Die Spurenstoffe werden durch Ozon und OH-Radikale zerstört
- Es bleiben Bruchteile der Spurenstoffe ohne Wirkung übrig
- Die übrigen Abwasserinhaltsstoffe (organische, anorganische) reagieren ebenfalls mit Ozon und OH-Radikalen
- Die meisten dieser Reaktionsprodukte haben auch keine Wirkung
- In problematischen Abwässern können toxische Oxidationsnebenprodukte entstehen
- Einige davon sind biologisch abbaubar, einige nicht!


Ozonung - Allgemeines

- Stoffumwandlung (Reaktionsprodukte)
 - → biologische Nachbehandlung notwendig
 - → Abklärungen Verfahrenseignung Ozonung
- Sicherheit (Ozon ein Reizgas, Umgang mit Sauerstoff)
- Platzsparend
- Wenig Wechselwirkungen mit bestehender Kläranlagen

Ozone Diffusor

Ozonung - Allgemeines

Stoffumwandlung (F

→ biologische N

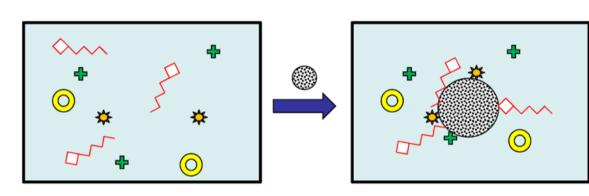
Wichtiger Hinweis:

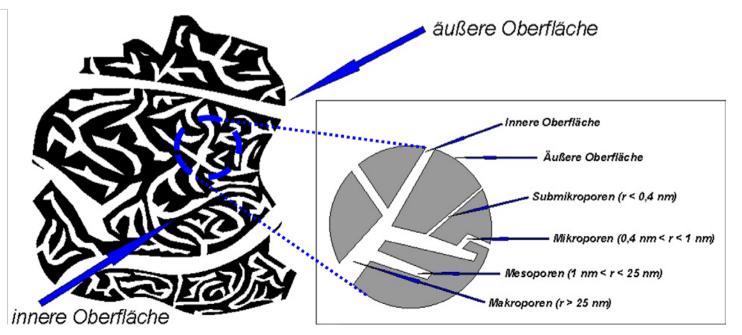
Eine biologisch aktive Nachbehandlung ist notwendig, zur Elimination von labilen Reaktionsprodukten sowie zur

Elimination des gut abbaubaren Kohlenstoffs (AOC)

Mögliche Verfahren: Wirbelbett, Sandfilter, GAK-Filter (zusätzliche Elimination von Spurenstoffen)

→ Abklärungen verranrenseignung ozonung


- Sicherheit (Ozon ein Reizgas, Umgang mit Sauerstoff)
- Platzsparend
- Wenig Wechselwirkungen mit bestehender Kläranlagen



Pulveraktivkohle - Allgemeines

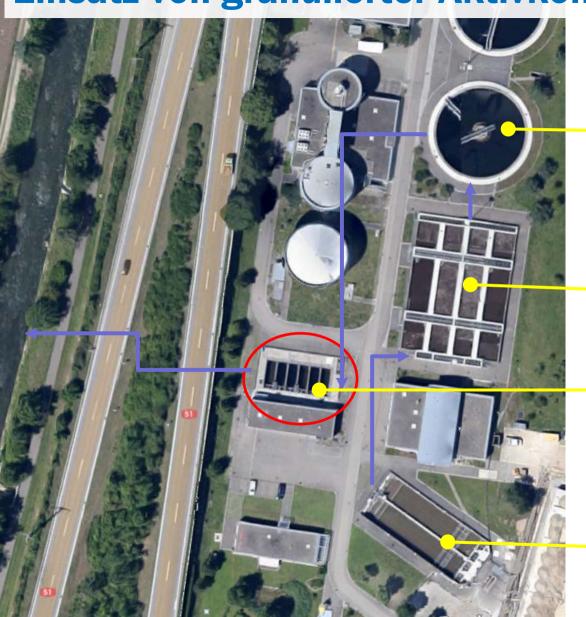
✓ Anlagerung der Stoffe (Adsorption) an Oberfläche der AK



Aktivkohle-Anwendungen (PAK)

Mögliche Verfahrenstechniken

«Ulmer-Verfahren»


Folie: M. Böhler, Eawag

Kläranlage Bachwis, Herisau Erste Schweizer Pulveraktivkohle-Stufe

Einsatz von granulierter Aktivkohle (GAK)

Nachklärbecken

Biologie

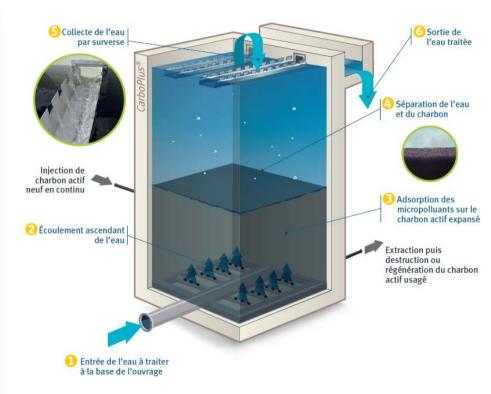
Sandfilter: Bei 2 Filtern Sand durch GAK ersetzt

Vorklärbecken

Folie: A. Joss, Eawag

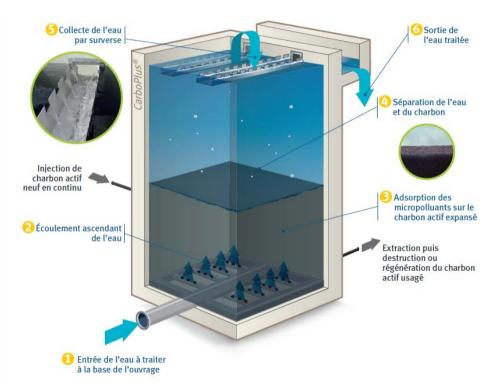
Impressionen: Sand Ausbau

Impressionen: GAK Einbau



Einsatz von μGAK: Prinzip Carboplus-Verfahren

Pilot CarboPlus® mit µGAK im Wirbelbett

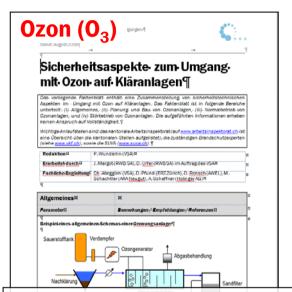

Verfahrensschema CarboPlus® mit µGAK aus Prospekt

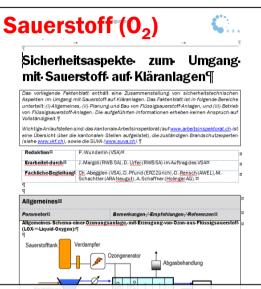
Folie: R. Casazza, Triform

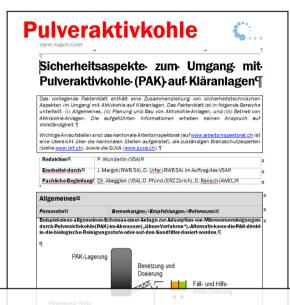
Einsatz von μGAK: Prinzip Carboplus-Verfahren

Pilot CarboPlus® mit µGAK im Wirbelbett

- Q, Beschickung: 0.7-2.0 m³/h (ca. 1% Q_{TWARA})
- Beschickung: 7-15 (max. 20) m/h
- Kontaktzeit; 8-17 Min. (Annahme: 50% Kohle-Wirbelbett, 50% Wasser)
- µGAK Dosierung: 12-15 mg/L
- µGAK Extraktion: 12-15 mg/L
- Kohlealter: 90-100 d
- Kohlekonzentration (im Bereich Kohlebett): 300 g/L




Verfahrensschema CarboPlus® mit µGAK aus Prospekt


Folie: R. Casazza, Triform

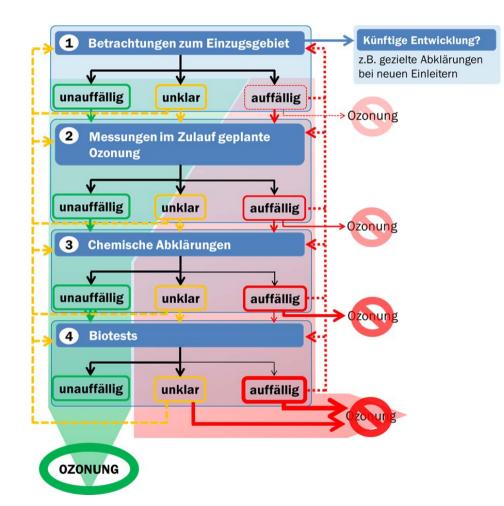
Betriebssicherheit: Faktenblätter

- 4-6 Seiten pro Faktenblatt
- Allgemeine Angaben: Eigenschaften, Gesundheitsrisiken, Geruchsschwelle, Explosionsgefahr (O_2) , etc.
- Planung und Bau: Materialwahl, Korrosion, Abrasion, Luft-Messi Lüftung, Lagerung, www.micropolf.ch
- **Normalbetrieb:** O₃-Zerstörung im Ablauf, O₃-Handling, etc.
- **Störbetrieb:** O₃-Detektoren/O₃-Schnüffler, et

VERFAHRENSTECHNIK IM JAHRE 2040...?

Verfahrenswahl: Was ist zu beachten?

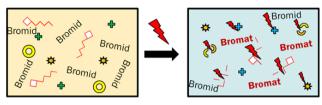
Abklärungen Verfahrenseignung Ozonung (Empfehlung des VSA)



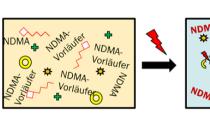
Die Ozonung eliminiert...

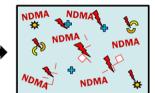
- Spurenstoffe
- ökotoxikologische Effekte
- Farbstoffe
- Keime (desinfizierende Wirkung)

WICHTIG:


Randbedingungen!
Ansonsten Gefahr der
Bildung von
problematischen
Reaktionsprodukten!

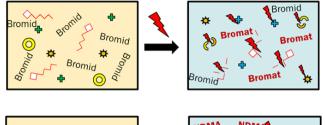
Problematische Reaktionsprodukte




Einzeln messbare Oxidationsnebenprodukte

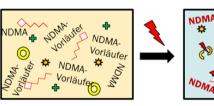
- Aerob nicht abbaubar
- Potentiell kanzerogen

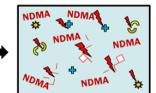
Vorläufersubstanzen → **Nitrosamine**


- Unterschiedliche Nitrosamine
- NDMA: häufigstes / problematischstes
- Aerob abbaubar

(Chrom \rightarrow Chromat)

Problematische Reaktionsprodukte

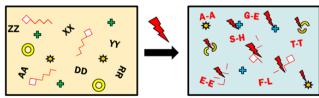



Einzeln messbare Oxidationsnebenprodukte

Bromid → **Bromat**

- Aerob nicht abbaubar
- Potentiell kanzerogen

Vorläufersubstanzen → **Nitrosamine**


- Unterschiedliche Nitrosamine
- NDMA: häufigstes / problematischstes
- Aerob abbaubar

(Chrom → Chromat)

Unbekannte Oxidationsnebenprodukte: Erfassung Summenwirkungen

Ökotoxikologische

Vorläufersubstanzen → andere Oxidationsnebenprodukte

- Grösster Teil unproblematisch (d.h. geringere Effekte als Ausgangssubstanzen)
- Einzelne Oxidationsnebenprodukte können aber toxischer sein

Wie wird der Betrieb bzw. die Reinigungsleistung überprüft? (Dept. Verordnung UVEK) Periodische Messungen der Spurenstoffe

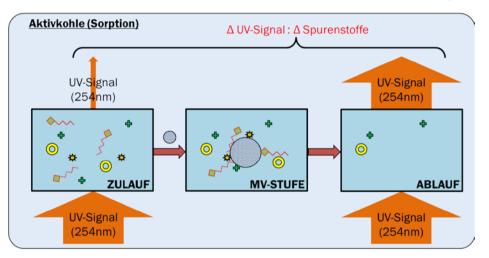
Kategorie	Stoff			
1	Amisulprid			
1	Carbamazepin			
1	Citalopram			
1	Clarithromycin			
1	Diclofenac			
1	Hydrochlorothiazid			
1	Metoprolol			
1	Venlafaxin			

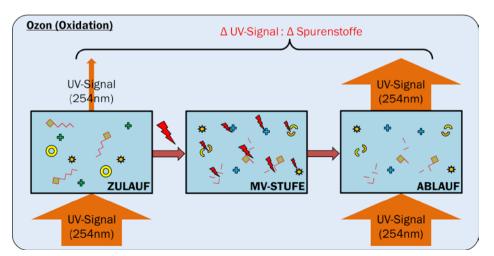
Kategorie	Stoff
2	Benzotriazol
2	Candesartan
2	Irbesartan
2	4-Methylbenzotriazol / 5-Methylbenzotriazol

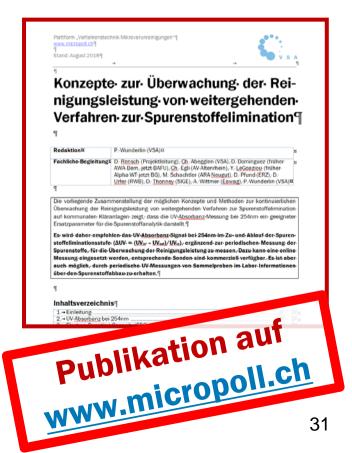
- Kategorie 1: Kategorie 2 = 4:2
- Mindestens 6 Stoffe
- Ideal: 12 Stoffe

Berechnung: Elimination pro Substanz, dann Mittelwert der Eliminationen pro Probenahme (80% Reinigungseffekt bei jeder Probenahme – NICHT im Jahresmittel)

Wie wird der Betrieb bzw. die Reinigungsleistung überprüft? (Dept. Verordnung UVEK)

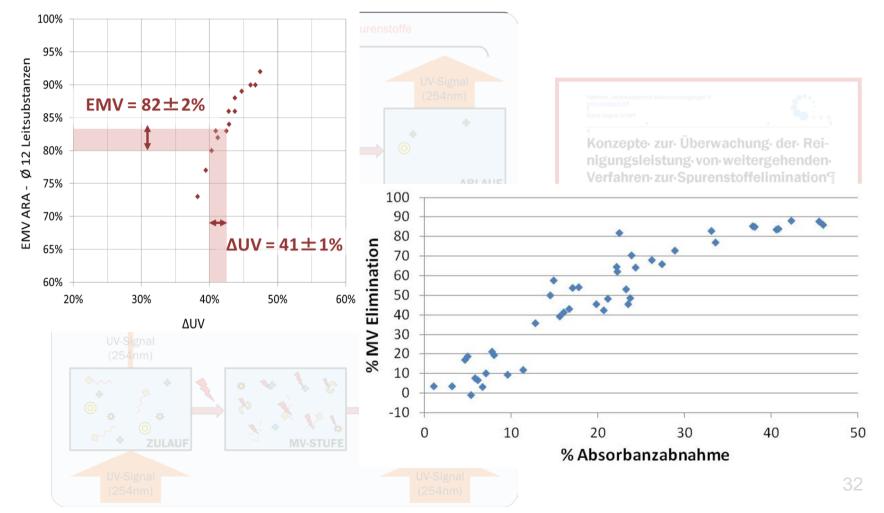


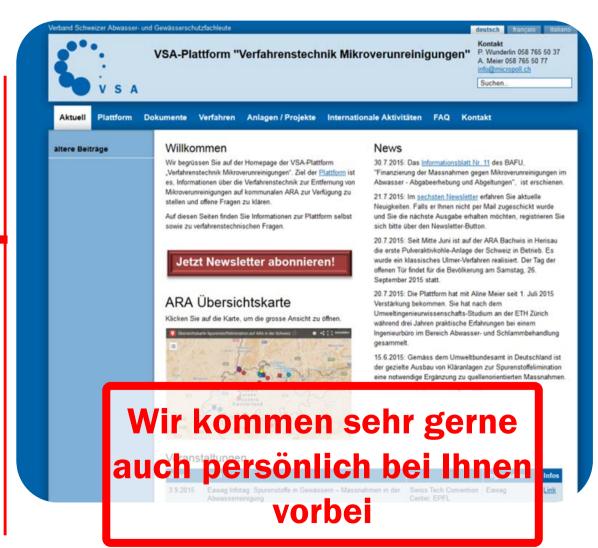

Peri	Tabelle der zulässigen Abweichungen GSchV, Anhang 4.2, Zulässige Abweichungen (bestehend)							
Kat	Anzahl der jährlichen Probenahn	zuläss	igen	Anzahl der jährlichen Probenahmen	Anzahl der zulässigen Abweichungen			
	4- 7 8- 16 17- 28 29- 40	2 3		172–187 188–203 204–219 220–235	14 15 16 17	ol /		
	41- 53 54- 67 68- 81 82- 95	6 7	ARA > 2'000 ARA > 10'00) EW: mindesten 00 EW: mindeste	eit der Probenahme s 4 (im ersten Jahr 8) ns 8 (im ersten Jahr 12) ns 12 (im ersten Jahr 24)	:ol 4:2		
	1	Venlafaxin		Ideal: 13	2 Stoffe			


Berechnung: Elimination pro Substanz, dann Mittelwert der Eliminationen pro Probenahme (80% Reinigungseffekt bei jeder Probenahme – NICHT im Jahresmittel)

Wie wird der Betrieb bzw. die Reinigungs-

UV-ABSORBANZMESSUNG (254nm)




Wie wird der Betrieb bzw. die Reinigungsleistung überprüft?

UV-ABSORBANZMESSUNG (254nm)

Wer hilft, wenn ich Fragen habe?

pascal.wunderlin@vsa.ch

julie.grelot@vsa.ch

